Story Segmentation and Topic Classification of Broadcast News via a Topic-Based Segmental Model and a Genetic Algorithm
2009; Institute of Electrical and Electronics Engineers; Volume: 17; Issue: 8 Linguagem: Inglês
10.1109/tasl.2009.2021304
ISSN1558-7924
AutoresChung‐Hsien Wu, Chia-Hsin Hsieh,
Tópico(s)Web Data Mining and Analysis
ResumoThis paper presents a two-stage approach to story segmentation and topic classification of broadcast news. The two-stage paradigm adopts a decision tree and a maximum entropy model to identify the potential story boundaries in the broadcast news within a sliding window. The problem for story segmentation is thus transformed to the determination of a boundary position sequence from the potential boundary regions. A genetic algorithm is then applied to determine the chromosome, which corresponds to the final boundary position sequence. A topic-based segmental model is proposed to define the fitness function applied in the genetic algorithm. The syllable- and word-based story segmentation schemes are adopted to evaluate the proposed approach. Experimental results indicate that a miss probability of 0.1587 and a false alarm probability of 0.0859 are achieved for story segmentation on the collected broadcast news corpus. On the TDT-3 Mandarin audio corpus, a miss probability of 0.1232 and a false alarm probability of 0.1298 are achieved. Moreover, an outside classification accuracy of 74.55% is obtained for topic classification on the collected broadcast news, while an inside classification accuracy of 88.82% is achieved on the TDT-2 Mandarin audio corpus.
Referência(s)