Artigo Revisado por pares

Architectural Control of Hierarchical Nanobelt Superstructures in Catanionic Reverse Micelles

2005; Wiley; Volume: 15; Issue: 3 Linguagem: Inglês

10.1002/adfm.200400242

ISSN

1616-3028

Autores

Hongtao Shi, Limin Qi, Jinghong Ma, Nian Wu,

Tópico(s)

Gas Sensing Nanomaterials and Sensors

Resumo

Advanced Functional MaterialsVolume 15, Issue 3 p. 442-450 Full PaperFull Access Architectural Control of Hierarchical Nanobelt Superstructures in Catanionic Reverse Micelles† H. Shi, H. Shi State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P.R. ChinaSearch for more papers by this authorL. Qi, L. Qi [email protected] Search for more papers by this authorJ. Ma, J. Ma State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P.R. ChinaSearch for more papers by this authorN. Wu, N. Wu State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P.R. ChinaSearch for more papers by this author H. Shi, H. Shi State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P.R. ChinaSearch for more papers by this authorL. Qi, L. Qi [email protected] Search for more papers by this authorJ. Ma, J. Ma State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P.R. ChinaSearch for more papers by this authorN. Wu, N. Wu State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, P.R. ChinaSearch for more papers by this author First published: 04 March 2005 https://doi.org/10.1002/adfm.200400242Citations: 129 † This work was supported by NSFC (20325312, 20473003, 20233010) and FANEDD (200020). We thank Prof. Humin Cheng for valuable discussions and Hongtao Shi thanks Prof. Buyao Zhu for helpful instruction. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract BaXO4 (X = Mo, W) nanobelts and a variety of hierarchical superstructures assembled from the nanobelts have been synthesized in a catanionic reverse-micelle system. The effects of various factors, such as the mixing ratio (r) between the anionic and cationic surfactants, the temperature, and the presence of polymeric additives, on the formation of the nanobelts and their hierarchical assembly have been examined in detail. In particular, r has been shown to be powerful in modulating the formation and assembly of the BaMoO4 and BaWO4 nanobelts. Architectural control of the penniform nanobelt superstructures has been readily achieved by changing the experimental parameters. A plausible two-stage growth mechanism has been proposed for the formation of penniform BaXO4 nanobelt superstructures in catanionic reverse micelles. REFERENCES 1a J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435. 10.1021/ar9700365 CASWeb of Science®Google Scholar 1b G. R. Patzke, F. K. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 2002, 41, 2446. 10.1002/1521-3773(20020715)41:14 3.0.CO;2-K CASPubMedWeb of Science®Google Scholar 1c Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353. 10.1002/adma.200390087 CASWeb of Science®Google Scholar 1d C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 2003, 31, 5. 10.1016/j.progsolidstchem.2003.08.001 CASWeb of Science®Google Scholar 2 M. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 393. 10.1038/46509 CASWeb of Science®Google Scholar 3a L. Manna, D. J. Milliron, A. Meidel, E. C. Scher, A. P. Alivisatos, Nat. Mater. 2003, 2, 382. 10.1038/nmat902 CASPubMedWeb of Science®Google Scholar 3b D. Wang, C. M. Lieber, Nat. Mater. 2003, 2, 355. 10.1038/nmat908 CASPubMedWeb of Science®Google Scholar 4 N. I. Kovtyukhova, T. E. Mallouk, Chem. Eur. J. 2002, 8, 4354. 10.1002/1521-3765(20021004)8:19 3.0.CO;2-1 CASPubMedGoogle Scholar 5 Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, P. Yang, Chem. Eur. J. 2002, 8, 1260. 10.1002/1521-3765(20020315)8:6 3.0.CO;2-Q CASPubMedWeb of Science®Google Scholar 6 E. Dujardin, L.-B. Hsin, C. R. C. Wang, S. Mann, Chem. Commun. 2001, 1264. 10.1039/b102319p CASWeb of Science®Google Scholar 7a F. Kim, S. Kwan, J. Akana, P. Yang, J. Am. Chem. Soc. 2001, 123, 4360. 10.1021/ja0059138 CASPubMedWeb of Science®Google Scholar 7b P. Yang, F. Kim, ChemPhysChem 2002, 3, 503. 10.1002/1439-7641(20020617)3:6 3.0.CO;2-U CASPubMedWeb of Science®Google Scholar 7c D. Whang, S. Jin, Y. Wu, C. M. Lieber, Nano Lett. 2003, 3, 1255. 10.1021/nl0345062 CASWeb of Science®Google Scholar 8a X. Wang, C. J. Summers, Z. L. Wang, Nano Lett. 2004, 4, 423. 10.1021/nl035102c CASPubMedWeb of Science®Google Scholar 8b E. C. Walter, M. P. Zach, F. Favier, B. J. Murray, K. Inazu, J. C. Hemminger, R. M. Penner, ChemPhysChem 2003, 4, 131. 10.1002/cphc.200390022 CASPubMedWeb of Science®Google Scholar 9a J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett. 2002, 2, 1287. 10.1021/nl025753t CASWeb of Science®Google Scholar 9b J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Lett. 2003, 3, 235. 10.1021/nl025884u CASWeb of Science®Google Scholar 9c H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P. Yang, J. Am. Chem. Soc. 2003, 125, 4728. 10.1021/ja034327m CASPubMedWeb of Science®Google Scholar 10a Z. A. Peng, X. Peng, J. Am. Chem. Soc. 2002, 124, 3343. 10.1021/ja0173167 CASPubMedWeb of Science®Google Scholar 10b Y. Jun, Y. Jing, J. Cheon, J. Am. Chem. Soc. 2002, 124, 615. 10.1021/ja016887w CASPubMedWeb of Science®Google Scholar 10c S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, D. L. Carroll, J. Am. Chem. Soc. 2003, 125, 16 186. 10.1021/ja038927x CASWeb of Science®Google Scholar 11a L. Qi, H. Cölfen, M. Antonietti, M. Li, J. D. Hopwood, A. J. Ashley, S. Mann, Chem. Eur. J. 2001, 7, 3526. 10.1002/1521-3765(20010817)7:16 3.0.CO;2-Z CASPubMedWeb of Science®Google Scholar 11b S. H. Yu, M. Antonietti, H. Cölfen, J. Hartmann, Nano Lett. 2003, 3, 379. 10.1021/nl025722y CASWeb of Science®Google Scholar 12 H. Shi, L. Qi, J. Ma, H. Cheng, J. Am. Chem. Soc. 2003, 125, 3450. 10.1021/ja029958f CASPubMedWeb of Science®Google Scholar 13 Q. Lu, F. Gao, S. Komarneni, J. Am. Chem. Soc. 2004, 126, 54. 10.1021/ja0386389 CASPubMedWeb of Science®Google Scholar 14a Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947. 10.1126/science.1058120 CASPubMedWeb of Science®Google Scholar 14b X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, Science 2004, 303, 1348. 10.1126/science.1092356 CASPubMedWeb of Science®Google Scholar 14c C. Ma, D. Moore, J. Li, Z. L. Wang, Adv. Mater. 2003, 15, 228. 10.1002/adma.200390052 CASWeb of Science®Google Scholar 14d Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 2003, 13, 9. 10.1002/adfm.200390013 CASWeb of Science®Google Scholar 15 S.-H. Yu, M. Antonietti, H. Cölfen, M. Giersig, Angew. Chem. Int. Ed. 2002, 114, 2462. 10.1002/1521-3757(20020703)114:13 3.0.CO;2-D Web of Science®Google Scholar 16 P. Gao, Z. L. Wang, J. Phys. Chem. B 2002, 106, 12 653. 10.1021/jp0265485 CASWeb of Science®Google Scholar 17 M.-P. Pileni, Nat. Mater. 2003, 2, 145. 10.1038/nmat817 CASPubMedWeb of Science®Google Scholar 18a M. P. Pileni, Langmuir 2001, 17, 7476. 10.1021/la010538y CASWeb of Science®Google Scholar 18b J. Zhang, B. Han, M. Liu, D. Liu, Z. Dong, J. Liu, D. Li, J. Phys. Chem. B 2003, 107, 3679. 10.1021/jp026738f CASWeb of Science®Google Scholar 19 B. A. Simmons, S. Li, V. T. John, G. L. McPherson, A. Bose, W. Zhou, J. He, Nano Lett. 2002, 2, 263. 10.1021/nl010080k CASWeb of Science®Google Scholar 20a L. Qi, J. Ma, H. Cheng, Z. Zhao, J. Phys. Chem. B 1997, 101, 3460. 10.1021/jp970419k CASWeb of Science®Google Scholar 20b J. D. Hopwood, S. Mann, Chem. Mater. 1997, 9, 1819. 10.1021/cm970113q CASWeb of Science®Google Scholar 20c M. Li, S. Mann, Langmuir 2000, 16, 7088. 10.1021/la0000668 CASWeb of Science®Google Scholar 20d S. Kwan, F. Kim, J. Akana, P. D. Yang, Chem. Commun. 2001, 447. 10.1039/b100005p CASWeb of Science®Google Scholar 21a X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 2000, 404, 59. 10.1038/35003535 CASPubMedWeb of Science®Google Scholar 21b V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science 2001, 291, 2115. 10.1126/science.1058495 CASPubMedWeb of Science®Google Scholar 21c Y. Jun, M. F. Casula, J.-H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, J. Am. Chem. Soc. 2003, 125, 15 981. 10.1021/ja0369515 CASWeb of Science®Google Scholar 21d F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, P. Zurcher, Angew. Chem. Int. Ed. 2003, 42, 5213. 10.1002/anie.200352090 CASPubMedWeb of Science®Google Scholar 22 H. Shi, L. Qi, J. Ma, H. Cheng, Chem. Commun. 2002, 1704. 10.1039/b204995c CASPubMedWeb of Science®Google Scholar 23 H. Shi, L. Qi, J. Ma, H. Cheng, B. Zhu, Adv. Mater. 2003, 15, 1647. 10.1002/adma.200305625 CASWeb of Science®Google Scholar 24a S.-H. Yu, B. Liu, M.-S. Mo, J.-H. Huang, X.-M. Liu, Y.-T. Qian, Adv. Funct. Mater. 2003, 13, 639. 10.1002/adfm.200304373 CASWeb of Science®Google Scholar 24b X. Cui, S.-H. Yu, L. Li, L. Biao, H. Li, M. Mo, X.-M. Liu, Chem. Eur. J. 2004, 10, 218. 10.1002/chem.200305429 CASPubMedWeb of Science®Google Scholar 24c Y. Xiong, Y. Xie, Z. Li, X. Li, S. Gao, Chem. Eur. J. 2004, 10, 654. 10.1002/chem.200305569 CASPubMedWeb of Science®Google Scholar 25a J. Bi, D. Q. Xiao, D. J. Gao, P. Yu, G. L. Yu, W. Zhang, J. G. Zhu, Cryst. Res. Technol. 2003, 38, 935. 10.1002/crat.200310116 CASWeb of Science®Google Scholar 25b B. Xie, Y. Wu, Y. Jiang, F. Li, J. Wu, S. Yuan, W. Yu, Y. Qian, J. Cryst. Growth 2002, 235, 283. 10.1016/S0022-0248(01)01800-0 CASWeb of Science®Google Scholar 25c P. Černý, H. Jelínková, Opt. Lett. 2002, 27, 360. 10.1364/OL.27.000360 CASPubMedWeb of Science®Google Scholar 26 B.-Y. Zhu, H.-T. Shi, J.-B. Huang, X. He, Acta Chim. Sin. 2001, 59, 913. CASWeb of Science®Google Scholar 27 B. Jönsson, P. Jokela, A. Khan, B. Lindman, A. Sadaghiani, Langmuir 1991, 7, 889. 10.1021/la00053a013 Web of Science®Google Scholar 28 H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 2003, 42, 2350. 10.1002/anie.200200562 CASPubMedWeb of Science®Google Scholar Citing Literature Volume15, Issue3March, 2005Pages 442-450 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX