Layer solutions in a half‐space for boundary reactions
2005; Wiley; Volume: 58; Issue: 12 Linguagem: Inglês
10.1002/cpa.20093
ISSN1097-0312
AutoresXavier Cabré, J. Solà‐Morales,
Tópico(s)Differential Equations and Numerical Methods
ResumoCommunications on Pure and Applied MathematicsVolume 58, Issue 12 p. 1678-1732 Layer solutions in a half-space for boundary reactions Xavier Cabré, Xavier Cabré [email protected] ICREA Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, SpainSearch for more papers by this authorJoan Solà-Morales, Joan Solà-Morales [email protected] Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, SpainSearch for more papers by this author Xavier Cabré, Xavier Cabré [email protected] ICREA Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, SpainSearch for more papers by this authorJoan Solà-Morales, Joan Solà-Morales [email protected] Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, SpainSearch for more papers by this author First published: 20 June 2005 https://doi.org/10.1002/cpa.20093Citations: 153AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Bibliography 1 Alberti, G.; Ambrosio, L.; Cabré, X. On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl Math 65 (2001), no. 1–3, 9– 33. 2 Alberti, G.; Bouchitté, G.; Seppecher, P. Un résultat de perturbations singulières avec la norme H1/2. (French) [A singular perturbation result involving the H1/2 norm]. C R Acad Sci Paris Sér I Math 319 (1994), no. 4, 333– 338. 3 Alberti, G.; Bouchitté, G.; Seppecher, P. Phase transition with the line-tension effect. Arch Rational Mech Anal 144 (1998), no. 1, 1– 46. 4 Ambrosio, L.; Cabré, X. Entire solutions of semilinear elliptic equations in ℝ3 and a conjecture of De Giorgi. J Amer Math Soc 13 (2000), no. 4, 725– 739. 5 Amick, C. J.; Toland, J. F. Uniqueness and related analytic properties for the Benjamin-Ono equation—a nonlinear Neumann problem in the plane. Acta Math 167 (1991), no. 1–2, 107– 126. 6 Arrieta, J. M.; Cónsul, N.; Rodríguez-Bernal, A. Pattern formation from boundary reaction. Differential equations and dynamical systems (Lisbon, 2000), 13– 18. Fields Institute Communications, 31. American Mathematical Society, Providence, 2002. 7 Arrieta, J. M.; Cónsul, N.; Rodríguez-Bernal, A. Stable boundary layers in a diffusion problem with nonlinear reaction at the boundary. Z Angew Math Phys 55 (2004), no. 1, 1– 14. 8 Barlow, M. T.; Bass, R. F.; Gui, C. The Liouville property and a conjecture of De Giorgi. Comm Pure Appl Math 53 (2000), no. 8, 1007– 1038. 9 Berestycki, H.; Caffarelli, L.; Nirenberg, L. Further qualitative properties for elliptic equations in unbounded domains. Ann Sc Norm Super Pisa Cl Sci (4) 25 (1997), no. 1–2, 69– 94. 10 Berestycki, H.; Caffarelli, L.; Nirenberg, L. Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm Pure Appl Math 50 (1997), no. 11, 1089– 1111. 11 Berestycki, H.; Hamel, F.; Monneau, R. One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math J 103 (2000), no. 3, 375– 396. 12 BerestyckiH.; Nirenberg, L. On the method of moving planes and the sliding method. Bull Braz Math Soc (NS) 22 (1991), no. 1, 1– 37. 13 Berestycki, H.; Wei, J. On singular perturbation problems with Robin boundary condition. Ann Sc Norm Super Pisa Cl Sci (5) 2 (2003), no. 1, 199– 230. 14 Bethuel, F.; Brezis, H.; Hélein, F. Ginzburg-Landau vortices. Progress in Nonlinear Differential Equatons and Their Applications, 13. Birkhäuser Boston, Boston 1994. 15 Cabré, X.; Cónsul, N. Minimizers for boundary reactions: renormalized energy, location of singularities, and applications. In preparation. 16 Caffarelli, L. Personal communication, 2001. 17 Carvalho, A. N.; Lozada-Cruz, G. Patterns in parabolic problems with nonlinear boundary conditions. Notas do ICMC/Universidade de Sao Paulo. Série Matematica, 123. Preprint, 2001. 18 Chipot, M.; Chlebík, M.; Fila, M.; Shafrir, I. Existence of positive solutions of a semilinear elliptic equation in ℝ with a nonlinear boundary condition. J Math Anal Appl 223 (1998), no. 2, 429– 471. 19 Cónsul, N.; Solà-Morales, J. Stable nonconstant equilibria in parabolic equations with nonlinear boundary conditions. C R Acad Sci Paris Sér I Math 321 (1995), no. 3, 299– 304. 20 Cónsul, N.; Solà-Morales, J. Stability of local minima and stable nonconstant equilibria. J Differential Equations 157 (1999), no. 1, 61– 81. 21 Garroni, A.; Müller, S. Γ-limit of a phase-field model of dislocations. Preprint, 2003. 22 Ghoussoub, N.; Gui, C. On a conjecture of De Giorgi and some related problems. Math Ann 311 (1998), 481– 491. 23 Ghoussoub, N.; Gui, C. On De Giorgi's conjecture in dimensions 4 and 5. Ann of Math (2) 157 (2003), no. 1, 313– 334. 24 Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations of second order. Second edition. Springer, Berlin, 1983. 25 Jerison, D.; Monneau, R. The existence of a symmetric global minimizer on ℝn−1 implies the existence of a counter-example to a conjecture of De Giorgi in ℝn. C R Acad Sci Paris Sér I Math 333 (2001), no. 5, 427– 431. 26 Kohn, R. V.; Slastikov, V. V. Another thin-film limit of micromagnetics. Preprint. 27 Kurzke, M. A nonlocal singular perturbation problem with periodic well potential. Preprint, 2004. 28 Kurzke, M. Boundary vortices in thin magnetic films. Preprint, 2003. 29 Li, Y.; Zhu, M. Uniqueness theorems through the method of moving spheres. Duke Math J 80 (1995), no. 2, 83– 417. 30 Modica, L. A gradient bound and a Liouville theorem for nonlinear Poisson equations. Comm Pure Appl Math 38 (1985), no. 5, 679– 684. 31 Modica, L. Monotonicity of the energy for entire solutions of semilinear elliptic equations. Partial differential equations and the calculus of variations, vol. II, 843– 850. Progress in Nonlinear Differential Equations and Their Applications, 2. Birkhäuser Boston, Boston 1989. 32 Moschini, L. Nonexistence theorems for semilinear elliptic problems. Doctoral dissertation. Università degli Studi di Roma "La Sapienza," 2002. 33 Ni, W.-M. Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer Math Soc 45 (1998), no. 1, 9– 18. 34 Savin, O. On a conjecture of De Giorgi. Preprint, 2003. 35 Toland, J. F. A few remarks about the Hilbert transform. J Funct Anal 145 (1997), no. 1, 151– 174. 36 Toland, J. F. The Peierls-Nabarro and Benjamin-Ono equations. J Funct Anal 145 (1997), no. 1, 136– 150. Citing Literature Volume58, Issue12December 2005Pages 1678-1732 ReferencesRelatedInformation
Referência(s)