
Asexual reproduction strategies and blooming potential in Scyphozoa
2014; Inter-Research; Volume: 510; Linguagem: Inglês
10.3354/meps10798
ISSN1616-1599
AutoresAgustín Schiariti, André C. Morandini, Gerhard Jarms, R von Glehn Paes, Stephan Franke, Hermes Mianzán,
Tópico(s)Marine Sponges and Natural Products
ResumoMEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 510:241-253 (2014) - DOI: https://doi.org/10.3354/meps10798 Asexual reproduction strategies and blooming potential in Scyphozoa Agustín Schiariti1,2,*, André C. Morandini3, Gerhard Jarms4, Renato von Glehn Paes3, Sebastian Franke4, Hermes Mianzan1,2 1Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo V, Ocampo No. 1, B7602HSA Mar del Plata, Argentina 2Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET, Universidad Nacional de Mar del Plata, 7600 Argentina 3Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo (USP), Rua do Matão trav. 14 n. 101, São Paulo, 05508-090 SP, Brazil 4Biocenter Grindel and Zoological Museum, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany *Corresponding author: agustin@inidep.edu.ar ABSTRACT: Scyphistomae show different modes of propagation, occasionally allowing the sudden release of great numbers of medusae through strobilation leading to so-called jellyfish blooms. Accordingly, factors regulating asexual reproduction strategies will control scyphistoma density, which, in turn, may influence blooming potential. We studied 11 scyphistoma species in 6 combinations of temperature and food supply to test the effects of these factors on asexual reproduction strategies and reproduction rates. Temperature and food availability increased reproduction rates for all species and observed reproduction modes. In all cases, starvation was the most important factor constraining the asexual reproduction of scyphistomae. Differences in scyphistoma density were found according to the reproductive strategy adopted by each species. Different Aurelia lineages and Sanderia malayensis presented a multi-mode strategy, developing up to 5 propagation modes. These species reached the highest densities, mostly through lateral budding and stolons. Cassiopea sp., Cephea cephea, Mastigias papua and Phyllorhiza punctata adopted a mono-mode reproductive strategy, developing only free-swimming buds. Lychnorhiza lucerna, Rhizostoma pulmo and Rhopilema esculentum also presented a mono-mode strategy, but they only developed podocysts. These 3 species had the lowest reproduction rates and polyp densities; not only their reproduction rates but also the need for a 2-fold set of environmental stimuli to produce new polyps (one for encystment, another for excystment) made this reproduction mode the slowest of those observed to be utilized for propagation. We conclude that blooms may be defined phylogenetically by the specific asexual modes each species develops, which, in turn, is regulated by environmental conditions. KEY WORDS: Polyp · Scyphistomae · Mono-mode strategy · Multi-mode strategy · Budding · Podocysts Full text in pdf format PreviousNextCite this article as: Schiariti A, Morandini AC, Jarms G, von Glehn Paes R, Franke S, Mianzan H (2014) Asexual reproduction strategies and blooming potential in Scyphozoa. Mar Ecol Prog Ser 510:241-253. https://doi.org/10.3354/meps10798 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 510. Online publication date: September 09, 2014 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2014 Inter-Research.
Referência(s)