The Isolated N-terminal Domain of the Glucagon-like Peptide-1 (GLP-1) Receptor Binds Exendin Peptides with Much Higher Affinity than GLP-1
2003; Elsevier BV; Volume: 278; Issue: 12 Linguagem: Inglês
10.1074/jbc.m212147200
ISSN1083-351X
AutoresRakel López de Maturana, Angela Willshaw, Antje Kuntzsch, Rainer Rudolph, Dan Donnelly,
Tópico(s)Neuroendocrine Tumor Research Advances
ResumoTwo fragments of the receptor for glucagon-like peptide-1 (GLP-1), each containing the N-terminal domain, were expressed and characterized in either bacterial or mammalian cells. The first fragment, rNT-TM1, included the N-terminal domain and first transmembrane helix and was stably expressed in the membrane of human embryonic kidney 293 cells. The second, 6H-rNT, consisted of only the N-terminal domain of the receptor fused with a polyhistidine tag at its N terminus. The latter fragment was expressed in Escherichia coli in the form of inclusion bodies from which the protein was subsequently purified and refolded in vitro. Although both receptor fragments displayed negligible 125I-labeled GLP-1(7–36)amide-specific binding, they both displayed high affinity for the radiolabeled peptide antagonist125I-exendin-4(9–39). Competition binding studies demonstrated that the N-terminal domain of the GLP-1 receptor maintains high affinity for the agonist exendin-4 as well as the antagonists exendin-4(3–39) and exendin-4(9–39) whereas, in contrast, GLP-1 affinity was greatly reduced. This study shows that although the exendin antagonists are not dependent upon the extracellular loops and transmembrane helices for maintaining their normal high affinity binding, the endogenous agonist GLP-1 requires regions outside of the N-terminal domain. Hence, distinct structural features in exendin-4, between residues 9 and 39, provide additional affinity for the N-terminal domain of the receptor. These data are consistent with a model for the binding of peptide ligands to the GLP-1 receptor in which the central and C-terminal regions of the peptides bind to the N terminus of the receptor, whereas the N-terminal residues of peptide agonists interact with the extracellular loops and transmembrane helices. Two fragments of the receptor for glucagon-like peptide-1 (GLP-1), each containing the N-terminal domain, were expressed and characterized in either bacterial or mammalian cells. The first fragment, rNT-TM1, included the N-terminal domain and first transmembrane helix and was stably expressed in the membrane of human embryonic kidney 293 cells. The second, 6H-rNT, consisted of only the N-terminal domain of the receptor fused with a polyhistidine tag at its N terminus. The latter fragment was expressed in Escherichia coli in the form of inclusion bodies from which the protein was subsequently purified and refolded in vitro. Although both receptor fragments displayed negligible 125I-labeled GLP-1(7–36)amide-specific binding, they both displayed high affinity for the radiolabeled peptide antagonist125I-exendin-4(9–39). Competition binding studies demonstrated that the N-terminal domain of the GLP-1 receptor maintains high affinity for the agonist exendin-4 as well as the antagonists exendin-4(3–39) and exendin-4(9–39) whereas, in contrast, GLP-1 affinity was greatly reduced. This study shows that although the exendin antagonists are not dependent upon the extracellular loops and transmembrane helices for maintaining their normal high affinity binding, the endogenous agonist GLP-1 requires regions outside of the N-terminal domain. Hence, distinct structural features in exendin-4, between residues 9 and 39, provide additional affinity for the N-terminal domain of the receptor. These data are consistent with a model for the binding of peptide ligands to the GLP-1 receptor in which the central and C-terminal regions of the peptides bind to the N terminus of the receptor, whereas the N-terminal residues of peptide agonists interact with the extracellular loops and transmembrane helices. glucagon-like peptide-1(7–36)amide GLP-1 receptor G protein-coupled receptor human embryonic kidney N-terminal receptor domain transmembrane helix It is well known that the action of glucose on pancreatic islets results in increased plasma insulin levels. Nevertheless, high blood glucose levels are not solely responsible for increased insulin secretion (for review, see Ref. 1Kieffer T.J. Habener J.L. Endocr. Rev. 1999; 20: 876-913Crossref PubMed Google Scholar). For example, in 1964 McIntyreet al. (2McIntyre N. Holsworth D.C. Turner D.S. Lancet. 1964; 2: 20-21Abstract PubMed Scopus (454) Google Scholar) demonstrated that intravenous injection of glucose resulted in a smaller insulin release than that resulting from intrajejunal glucose injection, even though the latter produced lower blood glucose levels compared with the former. Hence, glucose-dependent insulin secretion requires a nutrient-dependent component, which was believed to be an endocrine transmitter termed an "incretin" (3Creutzfeldt W. Diabetologia. 1979; 16: 75-85Crossref PubMed Scopus (628) Google Scholar). It has since been demonstrated that two hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, are responsible for the incretin effect (1Kieffer T.J. Habener J.L. Endocr. Rev. 1999; 20: 876-913Crossref PubMed Google Scholar). The predominant active form of GLP-1 is actually glucagon-like peptide-1(7–36)amide (termed GLP-11 throughout this paper), a 30-residue peptide hormone derived from the post-translational modification of proglucagon in intestinal L cells (1Kieffer T.J. Habener J.L. Endocr. Rev. 1999; 20: 876-913Crossref PubMed Google Scholar). GLP-1 not only increases glucose-dependent insulin secretion (4Kreymann B. Williams G. Ghatei M.A. Bloom S.R. Lancet. 1987; 2: 1300-1304Abstract PubMed Scopus (1539) Google Scholar, 5Fehmann H.C. Habener J.F. Trends Endocrinol. Metab. 1992; 3: 158-163Abstract Full Text PDF PubMed Scopus (54) Google Scholar, 6Holz G.G. Kuhtreiber W.M. Habener J.F. Nature. 1993; 361: 362-365Crossref PubMed Scopus (536) Google Scholar), but it also decreases glucose-dependent glucagon secretion (7Ørskov C. Holst J.J. Nielsen O.V. Endocrinology. 1988; 123: 2009-2013Crossref PubMed Scopus (355) Google Scholar, 8Kawai K. Suzuki S. Ohashi S. Endocrinology. 1989; 124: 1768-1773Crossref PubMed Scopus (91) Google Scholar) and decelerates gastric emptying (9Wettergren A. Scholdager B. Mortesen P.E. Myhre J. Christiansen J. Holst J.J. Dig. Dis. Sci. 1993; 38: 665-673Crossref PubMed Scopus (601) Google Scholar). In addition, GLP-1 has been shown to reduce appetite in rats (10Turton M.D. O'Shea D. Gunn I. Beak S.A. Edwards C.M.B. Meeran K. Choi S.J. Taylor G.M. Heath M.M. Lambert P.D. Wilding J.P.H. Smith D.M. Ghatei M.A. Herbert J. Bloom S.R. Nature. 1996; 379: 69-72Crossref PubMed Scopus (1593) Google Scholar) and to stimulate proinsulin gene transcription and biosynthesis in pancreatic β-cells (11Drucker D.J. Philippe J. Mojsov S. Chick W.L. Habener J.F. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3434-3438Crossref PubMed Scopus (700) Google Scholar, 12Fehmann H.C. Habener J.F. Endocrinology. 1992; 130: 159-166Crossref PubMed Scopus (258) Google Scholar). The physiological roles of GLP-1 in maintaining blood sugar levels, via a glucose-dependent mechanism, have heightened interest in the GLP-1 receptor (GLP-1R) as a target for glucose-dependent therapeutic agents designed to treat hyperglycemia resulting from diabetes (13Gutniak M. Ørskov C. Holst J.J. Ahrén B. Effendic S. New Engl. J. Med. 1992; 326: 1316-1322Crossref PubMed Scopus (840) Google Scholar, 14Moller D.E. Nature. 2001; 414: 821-827Crossref PubMed Scopus (899) Google Scholar). Unfortunately, the half-life of GLP-1 itself after subcutaneous injection is very short because of dipeptidyl peptidase IV cleavage of the first 2 N-terminal residues (15Kieffer T.J. McIntosh C.H.S. Pederson R.A. Endocrinology. 1995; 136: 3585-3596Crossref PubMed Scopus (0) Google Scholar), and so future research requires the design of physiologically stable GLP- 1R agonists. The venom of the Gila monster Heloderma suspectum contains a mixture of compounds that includes several peptides related in sequence to GLP-1. Two of these, exendin-3 and exendin-4, are 39-amino acid peptides that share ∼50% sequence identity to GLP-1 itself and are indeed potent GLP-1R agonists (Fig. 1) (16Göke R. Fehmann H.C. Linn T. Schmidt H. Krause M. Eng J. Göke B. J. Biol. Chem. 1993; 268: 19650-19655Abstract Full Text PDF PubMed Google Scholar, 17Thorens B. Porret A. Bühler L. Deng S.P. Morel P. Widmann C. Diabetes. 1993; 42: 1678-1682Crossref PubMed Google Scholar). Interestingly, although GLP-1 affinity is highly sensitive to N-terminal cleavage, exendin-4 can be truncated by up to 8 residues at its N terminus without significant loss of affinity, suggesting that relative to GLP-1, the central and/or C-terminal residues form additional stabilizing contacts with the receptor (15Kieffer T.J. McIntosh C.H.S. Pederson R.A. Endocrinology. 1995; 136: 3585-3596Crossref PubMed Scopus (0) Google Scholar, 18Montrose-Rafizadeh C. Yang H. Rodgers B.D. Beday A. Pritchette L.A. Eng J. J. Biol. Chem. 1997; 272: 21201-21206Abstract Full Text Full Text PDF PubMed Scopus (151) Google Scholar). Nevertheless, the first two amino acids are also essential for the efficacy of exendin peptides because, once removed, the truncated exendin peptides function as antagonists or inverse agonists (16Göke R. Fehmann H.C. Linn T. Schmidt H. Krause M. Eng J. Göke B. J. Biol. Chem. 1993; 268: 19650-19655Abstract Full Text PDF PubMed Google Scholar, 17Thorens B. Porret A. Bühler L. Deng S.P. Morel P. Widmann C. Diabetes. 1993; 42: 1678-1682Crossref PubMed Google Scholar, 18Montrose-Rafizadeh C. Yang H. Rodgers B.D. Beday A. Pritchette L.A. Eng J. J. Biol. Chem. 1997; 272: 21201-21206Abstract Full Text Full Text PDF PubMed Scopus (151) Google Scholar, 19Serre V. Dolci W. Schaerer E. Scrocchi L. Drucker D. Efrat S. Thorens B. Endocrinology. 1998; 139: 4448-4454Crossref PubMed Scopus (90) Google Scholar). Although the N termini of GLP-1 and exendin-4 are almost identical, exendin-4 contains 9 extra amino acids at the C terminus, which have been shown by NMR analysis to form a compact folding unit termed a "Trp-cage" (20Neidigh J.W. Fesinmeyer R.M. Prickett K.S. Andersen N.H. Biochemistry. 2001; 40: 13188-13200Crossref PubMed Scopus (188) Google Scholar). The NMR analysis also reveals that the central region of exendin-4 is largely helical, whereas the N terminus is rather more disordered (20Neidigh J.W. Fesinmeyer R.M. Prickett K.S. Andersen N.H. Biochemistry. 2001; 40: 13188-13200Crossref PubMed Scopus (188) Google Scholar). Although the central region of exendin-4 (comprising residues 10–30) only shares 8 identical residues with GLP-1, they all lie on the same face of an ideal α-helix, suggesting that it is this face of the helix which makes the critical contact with the receptor (21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar). GLP-1R is a G protein-coupled receptor (GPCR) that shares sequence identity with other "Family B" receptors such as those for secretin, glucagon, and vasoactive intestinal peptide (22Thorens B. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 8641-8645Crossref PubMed Scopus (837) Google Scholar). Family B GPCRs are characterized by an N-terminal domain of ∼100–150 amino acids containing 6 conserved cysteine residues. The disulfide bonding patterns of these conserved cysteine residues have been determined in three different receptor types and are equivalent, suggesting that this domain forms a related fold in all Family B GPCRs (23Grauschopf U. Lilie H. Honold K. Wozny M. Reusch D. Esswein A. Schäfer W. Rücknagel K.P. Rudolph R. Biochemistry. 2000; 39: 8878-8887Crossref PubMed Scopus (106) Google Scholar, 24Hofmann B.A. Sydow S. Jahn O. Van Werven L. Liepold T. Eckart K. Spiess J. Protein Sci. 2001; 10: 2050-2062Crossref PubMed Scopus (38) Google Scholar, 25Perrin M.H. Fischer W.H. Kunitake K.S. Craig A.G. Kerber S.C. Cervini L.A. Rivier J.E. Groppe J.C. Greenwald J. Nielsen S.M. Vale W.W. J. Biol. Chem. 2001; 276: 31528-31534Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar, 26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar). The N terminus of Family B GPCRs is clearly a major determinant in ligand binding. The use of both bacterial and mammalian expression systems have yielded soluble N-terminal domains for the corticotropin-releasing factor receptor, which maintain high affinity specific ligand binding (24Hofmann B.A. Sydow S. Jahn O. Van Werven L. Liepold T. Eckart K. Spiess J. Protein Sci. 2001; 10: 2050-2062Crossref PubMed Scopus (38) Google Scholar, 25Perrin M.H. Fischer W.H. Kunitake K.S. Craig A.G. Kerber S.C. Cervini L.A. Rivier J.E. Groppe J.C. Greenwald J. Nielsen S.M. Vale W.W. J. Biol. Chem. 2001; 276: 31528-31534Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). In addition, Escherichia coli expression systems have been used to express the isolated N-terminal domains of the receptors for secretin and parathyroid hormone in forms that display functional properties reminiscent of their related wild type receptors (23Grauschopf U. Lilie H. Honold K. Wozny M. Reusch D. Esswein A. Schäfer W. Rücknagel K.P. Rudolph R. Biochemistry. 2000; 39: 8878-8887Crossref PubMed Scopus (106) Google Scholar, 27Chow B.K.-C. Recept. Signal Trans. 1997; 7: 143-150PubMed Google Scholar). Although other regions of the receptor are also involved (e.g. 21, 29, 30), GLP-1 clearly also interacts directly with the N-terminal domain of its receptor (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar, 28Wilmen A. Göke B. Göke R. FEBS Lett. 1996; 398: 43-47Crossref PubMed Scopus (49) Google Scholar, 29Xiao Q. Jeng W. Wheeler M.B. J. Mol. Endocrinol. 2000; 25: 321-335Crossref PubMed Scopus (56) Google Scholar, 30Gelling R.W. Wheeler M.B. Xue J. Gyomorey S. Nian C. Pederson R.A. McIntosh C.H.S. Endocrinology. 1997; 138: 2640-2643Crossref PubMed Scopus (46) Google Scholar). The isolated N-terminal domain of GLP-1R has been expressed in several systems. Wilmen et al. (28Wilmen A. Göke B. Göke R. FEBS Lett. 1996; 398: 43-47Crossref PubMed Scopus (49) Google Scholar) expressed the domain from the rat receptor in E. coli and isolated the soluble fraction via nickel affinity chromatography. This group did not report a binding constant for GLP-1, but they were able to demonstrate direct specific binding of GLP-1 to the N terminus via chemical cross-linking. Xiao et al. (29Xiao Q. Jeng W. Wheeler M.B. J. Mol. Endocrinol. 2000; 25: 321-335Crossref PubMed Scopus (56) Google Scholar) expressed the isolated N-terminal domain of the rat GLP-1R in both mammalian (COS-7) and insect (Sf9) cells and obtained an IC50 for GLP-1 binding of 450 nm, more than 85-fold higher than that observed at the wild type receptor (5.2 nm). Bazarsuren et al. (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar) expressed the N-terminal domain of the human GLP-1R in E. coli, but, unlike Wilmen et al. (28Wilmen A. Göke B. Göke R. FEBS Lett. 1996; 398: 43-47Crossref PubMed Scopus (49) Google Scholar), they refolded the protein from the insoluble inclusion body fraction. In addition to determining the disulfide bond pattern, Bazarsuren et al. (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar) also determined the affinity of GLP-1 for the domain, using either surface plasmon resonance or isothermal titration calorimetry, to be in the region of 46–144 nm. Hence, in all cases it appears that GLP-1 has significantly lower affinity for the isolated N-terminal domain compared with the wild type receptor. However, it has been shown that residues in regions outside of the N-terminal domain of GLP-1 are also important for GLP-1 affinity (29Xiao Q. Jeng W. Wheeler M.B. J. Mol. Endocrinol. 2000; 25: 321-335Crossref PubMed Scopus (56) Google Scholar,21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar). For example, we recently showed that a mutation close to the first extracellular loop of GLP-1R had a significantly greater effect upon the affinity of GLP-1 than it did for either exendin-4 or exendin-4(9–39) (indeed we have since made several other site-directed mutants in the first two extracellular loops, which display a similar phenotype). 2R. López de Maturana, S. Al-Sabah, and D. Donnelly, unpublished results. Hence, because the affinities of exendin-4 and exendin-4(9–39) are relatively insensitive to mutations in the extracellular loops, we hypothesized that these ligands may bind to the isolated N-terminal domain with an affinity similar to that at the wild type GLP-1R. GLP-1(7–36)amide, exendin-4, exendin-4(3–39), and exendin-4(9–39) were from Bachem (Saffron Walden, UK).125I-GLP-1 (7–36)amide was a gift from Novo Nordisk A/S (Copenhagen, Denmark). 125I-Exendin-4(9–39) was purchased from PerkinElmer Life Sciences. The expression vectors pcDNA3 and pQE-30 were from Invitrogen and Qiagen, respectively. The M15(pREP4)E. coli strain and nickel-nitriloacetic acid resin were purchased from Qiagen. Oligonucleotides were obtained from Sigma. Restriction and modifying enzymes were from MBI Fermentas-Helena Biosciences (Sunderland, UK), Promega (Southampton, UK), Invitrogen (Paisley, Scotland, UK), and New England Biolabs. Cell culture reagents were obtained from Invitrogen and Sigma. General chemicals were from Merck and Sigma. The cDNA encoding amino acids Met1-Leu171 (N-terminal domain, including the putative signal sequence, and first transmembrane α-helix) of the GLP-1R was synthesized by PCR using as a template the pcDNA3 vector containing the full-length rat GLP-1R gene originally provided in pcDNA1 by Dr. B. Thorens (21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar, 22Thorens B. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 8641-8645Crossref PubMed Scopus (837) Google Scholar). The forward and reverse oligonucleotides incorporated the HindIII andXhoI recognition sites, respectively, to facilitate insertion into the pcDNA3 expression vector. The expressed receptor fragment was named rNT-TM1. For the second construct, the cDNA sequence encoding amino acids Ala13-Leu136(N-terminal domain without the signal sequence) of the GLP-1R was amplified by PCR using the same template as above. The forward and reverse oligonucleotides used in this reaction incorporated theBamHI and HindIII recognition sites, respectively, for subcloning into homologous sites in the pQE-30 expression vector. The resultant construct was identical to that of Wilmen et al. (28Wilmen A. Göke B. Göke R. FEBS Lett. 1996; 398: 43-47Crossref PubMed Scopus (49) Google Scholar), taking into account a misprint in the original paper concerning the restriction enzymes used. 3A. Wilmen, personal communication. The expressed protein was named 6H-rNT. The integrity of both constructs was verified by automated nucleotide sequencing. HEK-293 cells were stably transfected with pcDNA3/rNT-TM1 and membrane preparations from these cells prepared as described previously (21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar). Insertion of the cDNA encoding the N-terminal domain of the GLP-1R into the pQE-30 vector led to the addition of 12 extra amino acids at the N terminus of the GLP-1R fragment, including a His6 tag (MRGSHHHHHHGS). Bacterial expression and protein refolding were carried out according to Bazarsuren et al. (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar) except that the pulse renaturation stage was carried out manually, and functional characterization of the protein in radioligand binding assays was carried out after the refolding stage but prior to purification via ion exchange chromatography. 75 μl of membranes thawed slowly on ice was diluted appropriately in MBS (20 mm HEPES pH 7.4, 2.5 mm CaCl2, 1 mm MgCl2, 50 mg/liter−1bacitracin) and mixed with 75 μl of 0.2 nm125I-exendin-4(9–39) (50 pm final concentration), 75 μl of MBS and 75 μl of unlabeled peptides at a final concentration ranging from 1·10−6 to 1·10−12m, diluted in MBS. Nonspecific binding was estimated in the presence of 1 μm unlabeled ligand. Reactions were incubated for 1 h at room temperature. Unbound ligand was washed by rapid vacuum filtration (Brandel cell harvester; Gaithersburg, MD) through glass-fiber paper (Whatman GF/G grade filter paper) presoaked in 5% non-fat powdered milk. Filters were rinsed three times with 5 ml of ice-cold phosphate-buffered saline. Then they were cut, allowed to dry, and filter-bound radioactivity was measured in a gamma counter (RiaStar 5405 counter; Packard, Pangbourne, UK). Competition binding assays were set up in a total volume of 300 μl in Eppendorf tubes exactly as described above. After a 1-h incubation at room temperature, unbound ligand and soluble receptor were separated by adding 40 μl of nickel-nitriloacetic acid-agarose slurry to each tube, which were mixed and then incubated for 10 min. The ethanol in the resin slurry had been previously taken off and the resin equilibrated in MBS. After this incubation, the resin was pelleted by centrifugation at full speed in a bench top centrifuge for 1 min. The supernatant was pipetted out, and the resin was washed with MBS and pelleted once more. This supernatant was again removed, and the bottom of the Eppendorf tubes were chopped off and placed in appropriate test tubes for counting in the gamma counter. Binding curves in the figures represent one of at least three independent experiments for which each point is the mean of triplicate values with S.E. displayed as error bars. Counts were normalized to the maximal specific binding within each data set. IC50 values were calculated with a single site binding model fitted using nonlinear regression with the aid of the GraphPad PRISM® 3.0 software (San Diego, CA). Values in the tables represent the mean with S.E. calculated from the pIC50 values (−Log IC50) from at least three independent experiments. Assuming that the iodinated peptide had the same affinity as the unlabeled peptide, expression levels were calculated from homologous antagonist binding experiments using Equation 1 (31Akera T. Cheng V.K. Biochim. Biophys. Acta. 1977; 470: 412-423Crossref PubMed Scopus (125) Google Scholar) Bmax=B0⋅IC50⋅[L*]−1Equation 1 where B 0 is the specific binding of125I-exendin-4(9–39) and [L*] is the free concentration of 125I-exendin-4(9–39). Although the wild type GLP-1R displayed high affinity for125I-GLP-1, membranes prepared from HEK-293 cells containing rNT-TM1 showed barely detectable binding of the radiolabeled agonist used at 50 pm (data not shown). However, using the antagonist 125I-exendin-4(9–39) as the tracer, again at 50 pm, resulted in high specific binding, which allowed the determination of the IC50 values for various peptides via competition binding. From such binding assays, the IC50values for the antagonists exendin-4(3–39) and exendin-4(9–39) (IC50 = 7.9 and 15.8 nm, respectively) were found to be similar to those obtained with HEK-293 cell membranes expressing the wild type rat GLP-1R, termed rGLP-1R (IC50 = 10.0 and 5.0 nm, respectively; Tables I and II and Figs.Figure 2, Figure 3, Figure 4). The agonist exendin-4 also displayed a similar affinity at both receptors (IC50 = 1.6 nm wild type versus 6.3 nmrNT-TM1). However, in marked contrast, the affinity of rNT-TM1 for GLP-1 was estimated to be decreased >50-fold (IC50 = 316 nm versus 6.3 nm at the full-length receptor; Table II and Figs. 3 and 4). The B max value for rNT-TM1 determined from antagonist binding studies suggested that expression levels of this construct were reduced to 10% of rGLP-1R levels (6.8 ± 1.0 pmol·mg−1 versus67.7 ± 12.1 pmol·mg−1).Table IpIC50 values (−Log IC50) from homologous competition binding assays using radiolabeled exendin-4(9–39)rGLP-1RrNT-TM16H-rNT6H-hNT8.3 ± 0.3 (7)7.8 ± 0.1 (3)9.2 ± 0.2 (3)8.5 ± 0.2 (3)The mean ± S.E. is shown. The number of experiments is indicated in parentheses. Open table in a new tab Table IIpIC50 values (−Log IC50) from nonhomologous competition binding assays using radiolabeled exendin-4(9–39)rGLP-1RrNT-TM16H-rNTGLP-1(7–36)NH28.2 ± 0.2 (3)6.5 ± 0.2 (3)6.4 ± 0.4 (3)Exendin-48.8 ± 0.1 (3)8.2 ± 0.1 (3)9.0 ± 0.3 (3)Exendin-4(3–39)8.0 ± 0.1 (3)8.1 ± 0.1 (3)8.9 ± 0.4 (3)The mean ± S.E. is shown. The number of experiments is indicated in parentheses. Open table in a new tab Figure 4Binding profiles to rNT-TM1. Competition binding curves for rNT-TM1 using 125I-exendin-4(9–39) and unlabeled exendin-4 (■), exendin-4(3–39) (▴), and GLP-1 (▪) as the competing ligands.View Large Image Figure ViewerDownload (PPT)Figure 3Binding profiles to full-length rGLP-1R.Competition binding curves for rGLP-1R using125I-exendin-4(9–39) and unlabeled exendin-4 (■), exendin-4(3–39) (▴), and GLP-1 (▪) as the competing ligands.View Large Image Figure ViewerDownload (PPT) The mean ± S.E. is shown. The number of experiments is indicated in parentheses. The mean ± S.E. is shown. The number of experiments is indicated in parentheses. Radiolabeled exendin-4(9–39) was then used in competition binding studies to determine the binding parameters of the truncated receptor that had been refolded from inclusion bodies. For this part of the study, we used the isolated N-terminal domain from both the rat and human GLP-1Rs. The human N-terminal domain 6H-hNT had already been characterized extensively (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar), whereas the rat N-terminal domain 6H-rNT provides a more consistent comparison with the data from rGLP-1 and rNT-TM1. High affinity for exendin-4(9–39) at the isolated N-terminal receptor domain from the human receptor was observed with both the highly purified 6H-hNT preparation and the partially purified 6H-rNT preparation (Table I and Fig. 2). Further analysis demonstrated that 6H-rNT also maintained very high affinity for exendin-4, exendin-4(3–39), and exendin-4(9–39) (IC50 = 1.0, 1.3, and 0.6 nm, respectively). However, in contrast to these exendin peptides, GLP-1 affinity was >60-fold lower than at rGLP-1R (IC50 = 398 nm versus 6.3 nm respectively; Tables I and II and Figs. 2, 3, and5). Because we have shown previously that the binding site for the N-terminal region of the GLP-1 hormone involves the extracellular loop regions (21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar), it is perhaps not surprising that it has been reported that GLP-1 binds to the isolated N-terminal domain of the GLP-1R with much lower affinity than it does to the wild type receptor (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar, 28Wilmen A. Göke B. Göke R. FEBS Lett. 1996; 398: 43-47Crossref PubMed Scopus (49) Google Scholar, 29Xiao Q. Jeng W. Wheeler M.B. J. Mol. Endocrinol. 2000; 25: 321-335Crossref PubMed Scopus (56) Google Scholar). However, because the high affinity of exendin-4 for GLP-1R is neither dependent upon its own N-terminal residues (18Montrose-Rafizadeh C. Yang H. Rodgers B.D. Beday A. Pritchette L.A. Eng J. J. Biol. Chem. 1997; 272: 21201-21206Abstract Full Text Full Text PDF PubMed Scopus (151) Google Scholar) nor the loop regions of the receptor (21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar), we hypothesized that it may bind with high affinity to the isolated N terminus of GLP-1R. Such knowledge would provide important information in understanding ligand binding to this receptor, and it may also suggest means by which GLP-1 affinity may be improved by identifying the unique properties of exendin-4. To test this hypothesis, we made two constructs designed to express N-terminal fragments of the rat GLP-1R. The first truncated receptor (rNT-TM1), which included the N-terminal domain and first transmembrane helix of the receptor, was expressed in HEK-293 cell membranes. Because it is membrane-anchored via the single transmembrane helix and is processed by the eukaryotic expression machinery, the resultant binding data can be easily compared with the rat wild type receptor expressed in the same system (rGLP-1R). The second truncated receptor (6H-rNT), consisting of the N-terminal receptor domain fused with a His6 tag, was expressed inE. coli and refolded from inclusion bodies. If correctly refolded in vitro, the data obtained from the analysis of this receptor fragment should be comparable with that obtained for rNT-TM1 because this was refolded by the eukaryotic processing machinery in vivo. However, the soluble protein obtained from E. coli holds additional potential for further structural studies that require greater expression levels and solubility than can easily be obtained for membrane proteins, and hence its characterization is of great interest. The construct and expression system used to synthesize 6H-rNT were identical to those used previously by Wilmen et al. (28Wilmen A. Göke B. Göke R. FEBS Lett. 1996; 398: 43-47Crossref PubMed Scopus (49) Google Scholar). However, they obtained their protein from the soluble faction, whereas we found that the vast majority of the protein expressed in this system was in the form of insoluble inclusion bodies. Although we could increase the yield of soluble protein by lowering the induction temperature, most of the protein was still expressed in the insoluble fraction (data not shown). We therefore denatured and refolded the inclusion body protein according to a method based closely upon that of Bazarsuren et al. (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar) and analyzed the resultant protein for ligand binding. As a positive control, we analyzed a sample of the refolded human GLP-1R N-terminal domain, which previously had been extensively characterized by CD, cross-linking, affinity chromatography, surface plasmon resonance, and isothermal titration calorimetry (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar). In addition to acting as a positive control for the refolding of the rat analog, 6H-rNT, our data (Table I and Fig. 2) further confirm the correct refolding of 6H-hNT itself because we have demonstrated for the first time that it binds exendin-4(9–39) with very high affinity by using a radiolabeled ligand known to be highly selective for the GLP-1R. In competition binding studies using the radiolabeled antagonist peptide exendin-4(9–39), the affinities of the exendin peptides at the truncated rNT-TM1 were determined to be similar to those at rGLP-1R. Hence, there are clearly critical interactions between regions in these peptides and the receptor N terminus. However, GLP-1 displayed an IC50 at the truncated receptor which was more than 50-fold higher than at rGLP-1R (Table IIand Fig. 5). Hence there is clearly a difference between the agonists GLP-1 and exendin-4 because the latter is much less dependent either on regions on the receptor outside of the N-terminal domain of the receptor (Table II and Figs. Figure 3, Figure 4, Figure 5) or on its own N-terminal residues (15Kieffer T.J. McIntosh C.H.S. Pederson R.A. Endocrinology. 1995; 136: 3585-3596Crossref PubMed Scopus (0) Google Scholar, 18Montrose-Rafizadeh C. Yang H. Rodgers B.D. Beday A. Pritchette L.A. Eng J. J. Biol. Chem. 1997; 272: 21201-21206Abstract Full Text Full Text PDF PubMed Scopus (151) Google Scholar). The observation of a >50-fold reduction in affinity at rNT-TM1 highlights the reason why we initially failed to detect GLP-1 affinity using the radiolabeled agonist 125I-GLP-1. Because we used the radiolabeled agonist at 50 pm, the receptor occupancy at this ligand concentration would have been extremely low and, coupled with the reduced B max, the binding would have become undetectable. Nevertheless, it is clear from the competition studies that GLP-1 maintains reasonable affinity for rNT-TM1, albeit 50-fold reduced compared with the wild type receptor. The isolated N-terminal domain of the human GLP-1R has been expressed, refolded, and extensively characterized (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar). The correct refolding of this domain (6H-hNT) was shown by the binding of GLP-1 using either surface plasmon resonance or isothermal titration calorimetry. However, because the affinity for GLP-1 was found to be significantly lower than that seen at rGLP-1R expressed in mammalian cells, there was the possibility that the domain possessed a structure altered from that of the whole receptor, possibly because of the lack of glycosylation in the bacterial expression system or the in vitro refolding methodology. However, the very high affinity binding for the antagonist exendin-4(9–39) strongly suggests that this domain is correctly refolded and that the loss of GLP-1 affinity is because of the absence of interactions between the GLP-1 and other regions of the receptor. Hence, the determination of the disulfide bonding pattern for 6H-hNT (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar) can be viewed with very high confidence. To compare rNT-TM1, our membrane-anchored N-terminal domain for the rat GLP-1R, properly with the refolded N-terminal domain from E. coli, we decided to avoid potential species differences and hence generated a soluble version of the N-terminal domain for the rat GLP-1R. The analysis of this refolded protein confirmed that is was correctly folded because it bound exendin-4(9–39) with very high affinity ( 60-fold) at the isolated N-terminal domain compared with the full-length receptor. Overall, this part of the study confirmed the results using rNT-TM1 and further reveals the potential for detailed structural studies of this important domain. The isolated N-terminal domain of GLP-1R and other Family B GPCRs has been documented previously to have a reduced affinity for their endogenous ligands. In competition binding studies with agonist tracer, the IC50 for GLP-1 at the soluble rat GLP-1R N terminus purified from COS-7 cells and immobilized on Ni2+ beads was 450 nm (29Xiao Q. Jeng W. Wheeler M.B. J. Mol. Endocrinol. 2000; 25: 321-335Crossref PubMed Scopus (56) Google Scholar). The refolded N-terminal domain of the human GLP-1R was reported to have aKd of 47 nm, as determined by surface plasmon resonance, and 144 nm from isothermal titration calorimetry (26Bazarsuren A. Grauschopf U. Wozny M. Reusch D. Hoffmann E. Schaefer W. Panzner S. Rudolph R. Biophys. Chem. 2002; 96: 305-318Crossref PubMed Scopus (74) Google Scholar). Hence our data using GLP-1 are consistent with these previous observations in showing that normal GLP-1 affinity requires regions outside of the N- terminal domain. The results obtained with rNT-TM1 are somewhat similar to those obtained using the membrane-anchored N-terminal fragment of the rat receptor for pituitary adenylate cyclase-activating peptide subtype 1 expressed in COS-7 cells, where a 19-fold reduction in agonist affinity was observed at this similarly truncated receptor (32Cao Y.-J. Gimpl G. Fahrenholz F. Biochem. Biophys. Res. Commun. 1995; 212: 673-680Crossref PubMed Scopus (75) Google Scholar). The results are also very similar to the analogous corticotropin-releasing factor receptor fragment expressed in COSM6 cells, which showed no detectable binding in homologous competition binding assays when the agonist urocortin was used as tracer but bound with low nm affinity to the antagonist astressin when this peptide was used as the tracer in competition binding studies (33Perrin M.H. Sutton S. Bain D.L. Berggren W.T. Vale W.W. Endocrinology. 1998; 139: 566-570Crossref PubMed Scopus (95) Google Scholar). Comparison of our 6H-rNT data with a study on the N-terminal domain of corticotropin-releasing factor receptor 1 may also be useful because several similarities can be observed (25Perrin M.H. Fischer W.H. Kunitake K.S. Craig A.G. Kerber S.C. Cervini L.A. Rivier J.E. Groppe J.C. Greenwald J. Nielsen S.M. Vale W.W. J. Biol. Chem. 2001; 276: 31528-31534Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). This domain was produced as a soluble protein in E. coli and characterized using a radiolabeled peptide antagonist for corticotropin-releasing factor receptor 1, astressin. The Ki value for astressin at this receptor fragment was 50 nm compared with 1.8 nm for the full-length receptor in mammalian cells. Interestingly, one agonist (urocortin) was able to displace125I-astressin binding, although with a slightly reduced affinity, whereas two other agonists (corticotropin-releasing factor and sauvagine) were not able to compete for 125I-astressin binding. This example illustrates how agonists with a relatively high degree of sequence identity may have different binding modes on the same receptor. In general, studies focused on the N terminus of Family B GPCRs report very variable decreases in hormone affinity ranging between 20- and 1,000-fold (23Grauschopf U. Lilie H. Honold K. Wozny M. Reusch D. Esswein A. Schäfer W. Rücknagel K.P. Rudolph R. Biochemistry. 2000; 39: 8878-8887Crossref PubMed Scopus (106) Google Scholar, 25Perrin M.H. Fischer W.H. Kunitake K.S. Craig A.G. Kerber S.C. Cervini L.A. Rivier J.E. Groppe J.C. Greenwald J. Nielsen S.M. Vale W.W. J. Biol. Chem. 2001; 276: 31528-31534Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar, 32Cao Y.-J. Gimpl G. Fahrenholz F. Biochem. Biophys. Res. Commun. 1995; 212: 673-680Crossref PubMed Scopus (75) Google Scholar); others do not mention affinity values specifically, suggesting that affinity was too low to be quantified properly in the particular systems (27Chow B.K.-C. Recept. Signal Trans. 1997; 7: 143-150PubMed Google Scholar, 28Wilmen A. Göke B. Göke R. FEBS Lett. 1996; 398: 43-47Crossref PubMed Scopus (49) Google Scholar). Reports on similar rNT-TM1 constructs showing membrane presence but no detectable binding to their cognate hormones also exist (34Unson C.G. Cypess A.M. Kim H.N. Goldsmith P.K. Carruthers C.J.L. Merrifield R.B. Sakmar T.P. J. Biol. Chem. 1995; 270: 27720-27727Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar, 35DeAlmeida V.I. Mayo K.E. Mol. Endocrinol. 1998; 12: 750-765Crossref PubMed Google Scholar). In contrast to the GLP-1 binding requirements, the present analysis shows that the exendin antagonists do not require binding epitopes outside the N-terminal domain. This was first indicated after the analysis of site-directed mutations in the extracellular loops of GLP-1R, which reduced GLP-1 affinity but did not markedly reduce exendin-4(9–39) affinity, indicating that this peptide does not need intact loops for high affinity binding to GLP-1R (21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar).2 Because the normal affinity of exendin antagonists only requires interactions with the N-terminal domain of the receptor, it strongly suggests that the region between residues 9 and 39 interacts with the N terminus. The equivalent region in GLP-1 (residues 15–30) most likely also binds to this region because both peptides share a conserved face on the putative helix formed by this region (21López de Maturana R. Donnelly D. FEBS Lett. 2002; 350: 244-248Crossref Scopus (55) Google Scholar). However, there are clearly additional interactions made by residues between positions 9 and 39 of exendins, compared with residues 15–30 of GLP-1, which result in the increased affinity of exendins for the N-terminal domain of the receptor and also reduce the sensitivity of exendin ligands to N-terminal truncation. Hence, the fact that exendin-4 binding does not depend greatly on the extracellular loops does not necessitate that it requires an activation pocket different from that of GLP-1. The increased affinity of exendin-4 and the GLP-1R N terminus may be provided by the C-terminal Trp-cage motif (20Neidigh J.W. Fesinmeyer R.M. Prickett K.S. Andersen N.H. Biochemistry. 2001; 40: 13188-13200Crossref PubMed Scopus (188) Google Scholar) or perhaps by the increased helicity of the middle region of this peptide compared with GLP-1 (36Andersen N.H. Brodsky Y. Neidigh J.W. Prickett K.S. Bioorg. Med. Chem. 2002; 10: 79-85Crossref PubMed Scopus (60) Google Scholar, 37Chang X.Q. Keller D. Bjorn S. Led J.J. Magn. Reson. Chem. 2001; 39: 477-483Crossref Scopus (42) Google Scholar). Increasing peptide helicity has been proposed to improve binding to the N-terminal domain of the calcitonin receptor (38Stroop S. Nakamuta H. Kuestner R. Moore E. Epand R. Endocrinology. 1996; 137: 4752-4756Crossref PubMed Scopus (62) Google Scholar).
Referência(s)