Artigo Acesso aberto Revisado por pares

HEAT: High accuracy extrapolated ab initio thermochemistry

2004; American Institute of Physics; Volume: 121; Issue: 23 Linguagem: Inglês

10.1063/1.1811608

ISSN

1520-9032

Autores

Attila Tajti, Péter G. Szalay, Attila G. Császár, Mihály Kállay, Jürgen Gauß, Edward F. Valeev, B. A. Flowers, Juana Vázquez, John F. Stanton,

Tópico(s)

nanoparticles nucleation surface interactions

Resumo

A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and molecules via direct calculation of the corresponding elemental formation reactions are within 1 kJ mol(-1) to experiment in all cases. Given the quite different bonding environments in the product and reactant sides of these reactions, the results strongly indicate that even greater accuracy may be expected in reactions that preserve (either exactly or approximately) the number and types of chemical bonds.

Referência(s)