Artigo Acesso aberto Revisado por pares

Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

2014; Nature Portfolio; Volume: 508; Issue: 7494 Linguagem: Inglês

10.1038/nature13110

ISSN

1476-4687

Autores

Kıvanç Birsoy, Richard Possemato, Franziska K. Lorbeer, Erol C. Bayraktar, Prathapan Thiru, Burcu Yücel, Timothy C. Wang, Walter W. Chen, Clary B. Clish, David M. Sabatini,

Tópico(s)

Mitochondrial Function and Pathology

Resumo

New apparatus is used to maintain proliferating cancer cells in low-glucose conditions, demonstrating that mitochondrial oxidative phosphorylation (OXPHOS) is essential for optimal proliferation in these conditions; the most sensitive cell lines are defective in OXPHOS upregulation and may therefore be sensitive to current antidiabetic drugs that inhibit OXPHOS. Using a new continuous-flow culture apparatus called Nutrostat, designed to ensure constant and controlled extracellular nutrient levels, David Sabatini and colleagues screened cancer cell lines for genes important when cells experience low glucose levels. They found that the ability of cells to increase mitochondrial oxidative phosphorylation under conditions of low glucose was crucial. Cancer cells unable to do so due to impaired glucose utilization or mitochondrial DNA mutations were particularly sensitive to a class of compounds, biguanides, which are in use to treat diabetes. These findings may lead to new therapeutic applications of these drugs to treat tumours displaying such defects. As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues1,2, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS3,4, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function5. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

Referência(s)