Guanidine/Azole Binary System as an Efficient Catalyst for Morita–Baylis–Hillman Reaction
2012; Wiley; Volume: 4; Issue: 7 Linguagem: Inglês
10.1002/cctc.201200149
ISSN1867-3899
AutoresMasahiro Terada, Satoko Fukuchi, Kei Amagai, Megumi Nakano, Hitoshi Ube,
Tópico(s)Chemical Synthesis and Reactions
ResumoChemCatChemVolume 4, Issue 7 p. 963-967 Communication Guanidine/Azole Binary System as an Efficient Catalyst for Morita–Baylis–Hillman Reaction Prof. Dr. Masahiro Terada, Corresponding Author Prof. Dr. Masahiro Terada [email protected] Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602 Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorSatoko Fukuchi, Satoko Fukuchi Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorKei Amagai, Kei Amagai Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorDr. Megumi Nakano, Dr. Megumi Nakano Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorDr. Hitoshi Ube, Dr. Hitoshi Ube Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)Search for more papers by this author Prof. Dr. Masahiro Terada, Corresponding Author Prof. Dr. Masahiro Terada [email protected] Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602 Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorSatoko Fukuchi, Satoko Fukuchi Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorKei Amagai, Kei Amagai Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorDr. Megumi Nakano, Dr. Megumi Nakano Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan), Fax: (+81) 22-795-6602Search for more papers by this authorDr. Hitoshi Ube, Dr. Hitoshi Ube Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)Search for more papers by this author First published: 08 June 2012 https://doi.org/10.1002/cctc.201200149Citations: 12Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract A catalyst is more than ones and zeros: The efficient catalysis for the Morita–Baylis–Hillman reaction of aromatic aldehydes with cyclic enones was demonstrated using a binary catalytic system consisting of a guanidine derivative and an azole derivative. The present binary system is well embedded into the catalytic cycles to stabilize the anionic intermediates through the hydrogen-bonding interaction with the guanidinium ion. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description cctc_201200149_sm_miscellaneous_information.pdf290.4 KB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aA. Fersht, Enzyme Structure and Mechanism, Freeman, San Francisco, 1985; Google Scholar 1bH. Dugas, Bioorganic Chemistry: A Chemical Approach to Enzyme Action, 3rd ed., Springer, New York, 1996. 10.1007/978-1-4612-2426-6 Google Scholar 2 2aK. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1968, 41, 2815–2815; 10.1246/bcsj.41.2815 CASWeb of Science®Google Scholar 2bA. B. Baylis, M. E. D. Hillman, Offenlegungsschrift 2155113, U.S. Patent 3,743,669, 1972; [ Google ScholarChem. Abstr. 1972, 77, 34174q]. Google Scholar 3 3aD. Basavaiah, P. D. Rao, R. S. Hyma, Tetrahedron 1996, 52, 8001–8062; 10.1016/0040-4020(96)00154-8 CASWeb of Science®Google Scholar 3bE. Ciganek, Org. React. 1997, 51, 201–350; CASGoogle Scholar 3cD. Basavaiah, A. J. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811–891; 10.1021/cr010043d CASPubMedWeb of Science®Google Scholar 3dD. Basavaiah, K. V. Rao, R. J. Reddy, Chem. Soc. Rev. 2007, 36, 1581–1588; 10.1039/b613741p CASPubMedWeb of Science®Google Scholar 3eD. Basavaiah, B. S. Reddy, S. S. Badsara, Chem. Rev. 2010, 110, 5447–5674; 10.1021/cr900291g CASPubMedWeb of Science®Google Scholar 3fG. Masson, J. Zhu in Science of Synthesis Stereoselective Synthesis 2 (Eds.: ), Thieme, Stuttgart, 2011, pp. 735–784; Google Scholar 3gD. Basavaiah, G. Veeraraghavaiah, Chem. Soc. Rev. 2012, 41, 68–78. 10.1039/C1CS15174F CASPubMedWeb of Science®Google Scholar 4 4aW. Zhong, Y. Liu, G. Wang, L. Hong, Y. Chen, X. Chen, Y. Zheng, W. Zhang, W. Ma, Y. Shen, Y. Yao, Org. Prep. Proced. Int. 2011, 43, 1–66; 10.1080/00304948.2011.549065 CASWeb of Science®Google Scholar 4bR. Rios, Catal. Sci. Technol. 2012, 2, 267–278. 10.1039/C1CY00387A CASWeb of Science®Google Scholar 5For a review, see: Google Scholar 5aV. Carrasco-Sanchez, M. J. Simirgiotis, L. S. Santos, Molecules 2009, 14, 3989–4021. For selected recent examples of mechanistic investigations, see: 10.3390/molecules14103989 CASPubMedWeb of Science®Google Scholar 5bL. S. Santos, C. H. Pavam, W. P. Almeida, F. Coelho, M. N. Eberlin, Angew. Chem. 2004, 116, 4430–4433; 10.1002/ange.200460059 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 4330–4333; 10.1002/anie.200460059 CASPubMedWeb of Science®Google Scholar 5cV. K. Aggarwal, S. Y. Fulford, G. C. Lloyd-Jones, Angew. Chem. 2005, 117, 1734–1736; 10.1002/ange.200462462 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 1706–1708; 10.1002/anie.200462462 CASPubMedWeb of Science®Google Scholar 5dK. E. Price, S. J. Broadwater, B. J. Walker, D. T. McQuade, J. Org. Chem. 2005, 70, 3980–3987; 10.1021/jo050202j CASPubMedWeb of Science®Google Scholar 5eR. Robiette, V. K. Aggarwal, J. N. Harvey, J. Am. Chem. Soc. 2007, 129, 15513–15525; 10.1021/ja0717865 CASPubMedWeb of Science®Google Scholar 5fD. Roy, R. B. Sunoj, Org. Lett. 2007, 9, 4873; 10.1021/ol702211d CASPubMedWeb of Science®Google Scholar 5gC. Patel, R. B. Sunoj, J. Org. Chem. 2010, 75, 359–367. 10.1021/jo902123x CASPubMedWeb of Science®Google Scholar 6For the sole use of imidazole 4 c as the promoter for the MBH reaction. For an equimolar amount, see: Google Scholar 6aS. Z. Luo, B. Zhang, J. He, A. Janczuk, P. G. Wang, J.-P. Cheng, Tetrahedron Lett. 2002, 43, 7369–7371; 10.1016/S0040-4039(02)01716-1 CASWeb of Science®Google Scholar 6bN. Rastogi, I. N. N. Namboothiri, M. Cojocaru, Tetrahedron Lett. 2004, 45, 4745–4748. For a catalytic amount, see: 10.1016/j.tetlet.2004.04.069 CASWeb of Science®Google Scholar 6cR. Gatri, M. M. E. Gaïed, Tetrahedron Lett. 2002, 43, 7835–7836. 10.1016/S0040-4039(02)01515-0 CASWeb of Science®Google Scholar 7For the use of azole derivatives 4 as a catalyst or catalytic system for the MBH reaction, see: Google Scholar 7aM. Shi, J.-K. Jiang, C.-Q. Li, Tetrahedron Lett. 2002, 43, 127–130; 10.1016/S0040-4039(01)02057-3 CASWeb of Science®Google Scholar 7bJ. E. Imbriglio, M. M. Vasbinder, S. J. Miller, Org. Lett. 2003, 5, 3741–3743; 10.1021/ol035466b CASPubMedWeb of Science®Google Scholar 7cS. Z. Luo, P. G. Wang, J.-P. Cheng, J. Org. Chem. 2004, 69, 555–558; 10.1021/jo035345p CASPubMedWeb of Science®Google Scholar 7dS. Z. Luo, X. Mi, P. G. Wang, J.-P. Cheng, Tetrahedron Lett. 2004, 45, 5171–5174; 10.1016/j.tetlet.2004.04.136 CASWeb of Science®Google Scholar 7eC. E. Aroyan, M. M. Vasbinder, S. J. Miller, Org. Lett. 2005, 7, 3849–3851. 10.1021/ol0513544 CASPubMedWeb of Science®Google Scholar 8For the sole use of guanidine derivatives as the catalyst for the MBH reaction of acrylates. For TMG, see: Google Scholar 8aN. E. Leadbeater, C. van der Pol, J. Chem. Soc. Perkin Trans. 1 2001, 2831–2835; 10.1039/b106267k CASWeb of Science®Google Scholar 8bR. S. Grainger, N. E. Leadbeater, A. Masdeu Pamies, Catal. Commun. 2002, 3, 449–452. For 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, see: 10.1016/S1566-7367(02)00178-4 CASWeb of Science®Google Scholar 8cV. K. Aggarwal, A. Mereu, Chem. Commun. 1999, 2311–2312. 10.1039/a907754e CASWeb of Science®Google Scholar 9The present binary catalytic system accelerated the reaction markedly in ethanol without exception of the typical MBH reaction. However considerable amounts of by-products were formed in this solvent. Other common organic solvents such as toluene and dichloromethane were applicable to the present system. The yields of the desired product 3 aa were comparable to that observed in THF under the same reaction conditions using TMG/4 d (Table 1, entry 4). Google Scholar 10For pKa values of azole derivatives 4. For 4 a–c, 4 e, 4 g, and 4 h in DMSO and H2O, see: Google Scholar 10aI. Koppel, J. Koppel, P.-C. Maria, J.-F. Gal, R. Notario, V. M. Vlasov, R. W. Taft, Int. J. Mass Spectrom. Ion Process. 1998, 175, 61–69. For 4 d in DMSO, see: 10.1016/S0168-1176(98)00113-X CASWeb of Science®Google Scholar 10bR. Vianello, Z. B. Maksić, Mol. Phys. 2005, 103, 209–219. For 4 d in H2O, see: 10.1080/00268970512331316184 CASWeb of Science®Google Scholar 10cJ. Schmidt, H. Gehlen, Zeitschrift Chem. 1965, 5, 304–304. Also see: 10.1002/zfch.19650050810 CASWeb of Science®Google Scholar 10dJ. Catalán, R. M. Claramunt, J. Elguero, J. Laynez, M. Menendez, F. Anvia, J. H. Quian, M. Taagepera, R. W. Taft, J. Am. Chem. Soc. 1988, 110, 4105–4111. For 4 f in H2O, see: 10.1021/ja00221a001 CASWeb of Science®Google Scholar 10eW. Li, B. C. Norris, P. Snodgrass, K. Prasad, A. S. Stockett, V. Pryamitsyn, V. Ganesan, C. W. Bielawski, A. Manthiram, J. Phys. Chem. B 2009, 113, 10063–10067. 10.1021/jp904192t CASPubMedWeb of Science®Google Scholar 11F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463. 10.1021/ar00156a004 CASWeb of Science®Google Scholar 12 12aM. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454–1455; 10.1021/ja057848d CASPubMedWeb of Science®Google Scholar 12bM. Terada, T. Ikehara, H. Ube, J. Am. Chem. Soc. 2007, 129, 14112–14113; 10.1021/ja0746619 CASPubMedWeb of Science®Google Scholar 12cM. Terada, M. Nakano, Heterocycles 2008, 76, 1049–1055; 10.3987/COM-08-S(N)105 CASWeb of Science®Google Scholar 12dH. Ube, N. Shimada, M. Terada, Angew. Chem. 2010, 122, 1902–1905; 10.1002/ange.200906647 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 1858–1981; 10.1002/anie.200906647 CASPubMedWeb of Science®Google Scholar 12eM. Terada, H. Nii, Chem. Eur. J. 2011, 17, 1760–1763; 10.1002/chem.201003015 CASPubMedWeb of Science®Google Scholar 12fM. Terada, K. Ando, Org. Lett. 2011, 13, 2026–2029; 10.1021/ol200415u CASPubMedWeb of Science®Google Scholar 12gM. Terada, K. Amagai, K. Ando, E. Kwon, H. Ube, Chem. Eur. J. 2011, 17, 9037–9041. Also see: 10.1002/chem.201101076 CASPubMedWeb of Science®Google Scholar 12hM. Terada, M. Nakano, H. Ube, J. Am. Chem. Soc. 2006, 128, 16044–16045; 10.1021/ja066808m CASPubMedWeb of Science®Google Scholar 12iM. Nakano, M. Terada, Synlett 2009, 1670–1674; CASWeb of Science®Google Scholar 12jM. Terada, D. Tsushima, M. Nakano, Adv. Synth. Catal. 2009, 351, 2817–2821; 10.1002/adsc.200900594 CASWeb of Science®Google Scholar 12kH. Ube, M. Terada, Bioorg. Med. Chem. Lett. 2009, 19, 3895–3898. For a personal research account, see: 10.1016/j.bmcl.2009.03.097 CASPubMedWeb of Science®Google Scholar 12lM. Terada, J. Synth. Org. Chem. Jpn. 2010, 67, 1159–1168. 10.5059/yukigoseikyokaishi.68.1159 Web of Science®Google Scholar 13For reviews of chiral guanidine catalysts, see: Google Scholar 13aT. Ishikawa, T. Isobe, Chem. Eur. J. 2002, 8, 552–557; 10.1002/1521-3765(20020201)8:3 3.0.CO;2-T CASPubMedWeb of Science®Google Scholar 13bT. Ishikawa, T. Kumamoto, Synthesis 2006, 737–752; 10.1055/s-2006-926325 CASWeb of Science®Google Scholar 13cD. Leow, C.-H. Tan, Chem. Asian J. 2009, 4, 488–507. 10.1002/asia.200800361 CASPubMedWeb of Science®Google Scholar Citing Literature Volume4, Issue7Special Issue:OrganocatalysisJuly 2012Pages 963-967 ReferencesRelatedInformation
Referência(s)