Artigo Revisado por pares

Gas‐Phase Preparation of Carbonic Acid and Its Monomethyl Ester

2014; Wiley; Volume: 53; Issue: 44 Linguagem: Inglês

10.1002/anie.201406969

ISSN

1521-3773

Autores

Hans Peter Reisenauer, J. Philipp Wagner, Peter R. Schreiner,

Tópico(s)

Spectroscopy and Laser Applications

Resumo

Angewandte Chemie International EditionVolume 53, Issue 44 p. 11766-11771 Communication Gas-Phase Preparation of Carbonic Acid and Its Monomethyl Ester† Dr. Hans Peter Reisenauer, Dr. Hans Peter Reisenauer Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Search for more papers by this authorM. Sc. J. Philipp Wagner, M. Sc. J. Philipp Wagner Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Search for more papers by this authorProf. Dr. Peter R. Schreiner, Corresponding Author Prof. Dr. Peter R. Schreiner [email protected] Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Search for more papers by this author Dr. Hans Peter Reisenauer, Dr. Hans Peter Reisenauer Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Search for more papers by this authorM. Sc. J. Philipp Wagner, M. Sc. J. Philipp Wagner Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Search for more papers by this authorProf. Dr. Peter R. Schreiner, Corresponding Author Prof. Dr. Peter R. Schreiner [email protected] Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Institute of Organic Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35392 Giessen (Germany)Search for more papers by this author First published: 04 September 2014 https://doi.org/10.1002/anie.201406969Citations: 33 † This research was supported by the Deutsche Forschungsgemeinschaft (Schr597/18-1). J.P.W. is grateful to the Fonds der Chemischen Industrie for a fellowship. We thank Alexander Vaughn and Wesley D. Allen for sharing their Perl script for the FPA computations. We thank Hinrich Grothe for sending us an electronic version of Jürgen Bernard’s PhD thesis, 13 and Hinrich Grothe as well as Thomas Loerting for permission (May 04, 2014) to reproduce Figure S4 of Ref. 16. This work was first presented at the EUCHEM Conference on Stereochemistry (Bürgenstock) on May 04, 2014. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract The matrix-isolation IR spectrum of carbonic acid generated through gas-phase pyrolysis of Boc2O (Boc=tert-butoxycarbonyl) or (tBuO)2CO unequivocally shows that the long-claimed identity of the gas phase above its α-polymorph is not carbonic acid, but rather the monomethyl ester, which was analogously prepared from MeOC(O)OtBu and identified in the gas phase for the first time. Abstract Carbonic acid (H2CO3), an essential molecule of life (e.g., as bicarbonate buffer), has been well characterized in solution and in the solid state, but for a long time, it has eluded its spectral characterization in the gas phase owing to a lack of convenient preparation methods; microwave spectra were recorded only recently. Here we present a novel and general method for the preparation of H2CO3 and its monomethyl ester (CH3OCO2H) through the gas-phase pyrolysis of di-tert-butyl and tert-butyl methyl carbonate, respectively. H2CO3 and CH3OCO2H were trapped in noble-gas matrices at 8 K, and their infrared spectra match those computed at high levels of theory [focal point analysis beyond CCSD(T)/cc-pVQZ] very well. Whereas the spectra also perfectly agree with those of the vapor phase above the β-polymorph of H2CO3, this is not true for the previously reported α-polymorph. Instead, the vapor phase above α-H2CO3 corresponds to CH3OCO2H, which sheds new light on the research that has been conducted on molecular H2CO3 over the last decades. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description anie_201406969_sm_miscellaneous_information.pdf2.3 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1S. K. Reddy, S. Balasubramanian, Chem. Commun. 2014, 50, 503. 2T. Loerting, C. Tautermann, R. T. Kroemer, I. Kohl, A. Hallbrucker, E. Mayer, K. R. Liedl, Angew. Chem. Int. Ed. 2000, 39, 891; Angew. Chem. 2000, 112, 919. 3G. Strazzulla, J. R. Brucato, G. Cimino, M. E. Palumbo, Planet. Space Sci. 1996, 44, 1447. 4 4aW. Hage, K. R. Liedl, A. Hallbrucker, E. Mayer, Science 1998, 279, 1332; 4bY. Oba, N. Watanabe, A. Kouchi, T. Hama, V. Pirronello, Astrophys. J. 2010, 722, 1598; 4cW. Zheng, R. I. Kaiser, Chem. Phys. Lett. 2007, 450, 55. 5M. H. Moore, R. K. Khanna, Spectrochim. Acta Part A 1991, 47, 255. 6W. Hage, A. Hallbrucker, E. Mayer, J. Am. Chem. Soc. 1993, 115, 8427. 7K. Adamczyk, M. Prémont-Schwarz, D. Pines, E. Pines, E. T. J. Nibbering, Science 2009, 326, 1690. 8J. K. Terlouw, C. B. Lebrilla, H. Schwarz, Angew. Chem. Int. Ed. Engl. 1987, 26, 354; Angew. Chem. 1987, 99, 352. 9T. Mori, K. Suma, Y. Sumiyoshi, Y. Endo, J. Chem. Phys. 2009, 130, 204308. 10T. Mori, K. Suma, Y. Sumiyoshi, Y. Endo, J. Chem. Phys. 2011, 134, 044319. 11G. Bucher, Eur. J. Org. Chem. 2010, 1070. 12 12aK. Winkel, W. Hage, T. Loerting, S. L. Price, E. Mayer, J. Am. Chem. Soc. 2007, 129, 13863; 12bJ. Bernard, M. Seidl, I. Kohl, K. R. Liedl, E. Mayer, Ó. Gálvez, H. Grothe, T. Loerting, Angew. Chem. Int. Ed. 2011, 50, 1939; Angew. Chem. 2011, 123, 1981; 12cC. Mitterdorfer, J. Bernard, F. Klauser, K. Winkel, I. Kohl, K. R. Liedl, H. Grothe, E. Mayer, T. Loerting, J. Raman Spectrosc. 2012, 43, 108. 13J. Bernard, PhD Thesis, University of Innsbruck (Austria), 2014. This thesis was sent to the authors on May 9, 2014. J. Barnard concludes “…︁the formation of the monomethyl carbonic acid appears possible.” (p. 106) and “To shed further light on the nature of the different species, more experiments need to be done.” (p. 107). 14M. R. Rossi, D. T. R. Vidal, C. L. do Lago, Food Chem. 2012, 133, 352. 15 15aS. Minakata, I. Sasaki, T. Ide, Angew. Chem. Int. Ed. 2010, 49, 1309; Angew. Chem. 2010, 122, 1331; 15bK. N. West, C. Wheeler, J. P. McCarney, K. N. Griffith, D. Bush, C. L. Liotta, C. A. Eckert, J. Phys. Chem. A 2001, 105, 3947. 16J. Bernard, R. G. Huber, K. R. Liedl, H. Grothe, T. Loerting, J. Am. Chem. Soc. 2013, 135, 7732. 17A. G. Császár, W. D. Allen, H. F. Schaefer, J. Chem. Phys. 1998, 108, 9751. 18W. Hage, A. Hallbrucker, E. Mayer, J. Chem. Soc. Faraday Trans. 1996, 92, 3183. 19W. Hage, A. Hallbrucker, E. Mayer, J. Chem. Soc. Faraday Trans. 1995, 91, 2823. 20 20aG. Gattow, W. Behrendt, Angew. Chem. Int. Ed. Engl. 1972, 11, 534; Angew. Chem. 1972, 84, 549; 20bA. Dibenedetto, M. Aresta, P. Giannoccaro, C. Pastore, I. Pápai, G. Schubert, Eur. J. Inorg. Chem. 2006, 2006, 908. 21W. Hage, A. Hallbrucker, E. Mayer, J. Mol. Struct. 1997, 408, 527. 22 22aK. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479; 22bR. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, Chem. Phys. Lett. 1990, 165, 513; 22cR. J. Bartlett, J. D. Watts, S. A. Kucharski, J. Noga, Chem. Phys. Lett. 1990, 167, 609; 22dT. D. Crawford, H. F. Schaefer, in Reviews in Computational Chemistry, Wiley, Hoboken, 2007, p. 33. 23A. G. Császár, G. Tarczay, M. L. Leininger, O. L. Polyansky, J. Tennyson, W. D. Allen in Spectroscopy from Space, Vol. 20 (Eds.: ), Kluwer, Dordrecht, 2001, p. 317. 24 24aJ. T. H. Dunning, J. Chem. Phys. 1989, 90, 1007; 24bD. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1995, 103, 4572. 25D. Feller, J. Chem. Phys. 1993, 98, 7059. 26 26aA. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, A. K. Wilson, Chem. Phys. Lett. 1998, 286, 243; 26bT. Helgaker, W. Klopper, H. Koch, J. Noga, J. Chem. Phys. 1997, 106, 9639. 27W. Klopper, J. Comput. Chem. 1997, 18, 20. 28N. C. Handy, Y. Yamaguchi, H. F. Schaefer, J. Chem. Phys. 1986, 84, 4481. 29J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, CFOUR, a quantum chemical program package, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, D. P. O’Neill, D. R. Price, E. Prochnow, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen, 2012. 30Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157. 31M. J. T. Frisch et al., Gaussian 09, D.01, Wallington CT, 2009. Citing Literature Volume53, Issue44October 27, 2014Pages 11766-11771 ReferencesRelatedInformation

Referência(s)