Molecular and Cellular Biology of Insulin‐receptor Internalization a
1994; Wiley; Volume: 733; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1994.tb17276.x
ISSN1749-6632
AutoresJean‐Louis Carpentier, Jean‐Pierre Paccaud,
Tópico(s)Diabetes Treatment and Management
ResumoAnnals of the New York Academy of SciencesVolume 733, Issue 1 p. 266-278 Molecular and Cellular Biology of Insulin-receptor Internalizationa JEAN-LOUIS CARPENTIER, JEAN-LOUIS CARPENTIER Department of Morphology University of Geneva Medical School 1 Rue Michel Servet CH-1211 Geneva 4, SwitzerlandSearch for more papers by this authorJEAN-PIERRE PACCAUD, JEAN-PIERRE PACCAUD Department of Morphology University of Geneva Medical School 1 Rue Michel Servet CH-1211 Geneva 4, SwitzerlandSearch for more papers by this author JEAN-LOUIS CARPENTIER, JEAN-LOUIS CARPENTIER Department of Morphology University of Geneva Medical School 1 Rue Michel Servet CH-1211 Geneva 4, SwitzerlandSearch for more papers by this authorJEAN-PIERRE PACCAUD, JEAN-PIERRE PACCAUD Department of Morphology University of Geneva Medical School 1 Rue Michel Servet CH-1211 Geneva 4, SwitzerlandSearch for more papers by this author First published: September 1994 https://doi.org/10.1111/j.1749-6632.1994.tb17276.xCitations: 9 a This work has been supported by Grant 31-34093.92 from the Swiss National Science Foundation, the Juvenile Diabetes Foundation, and the Fondation Centre de Recherches Médicales Carlos and Elsie De Reuter. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Jacobs, S., E. Hazum & P. Cuatrecasas. 1980. The subunit structure of rat liver insulin receptor. Antibodies directed against the insulin-binding subunit. J. Biol. Chem. 255: 6937–6940. 2 Massagué, J., P. F. Pilch & M. P. Czech. 1980. Electrophoretic resolution of three major insulin receptor structures with unique stoichiometries. Proc. Natl. Acad. Sci. USA 77: 7137–7141. 3 Ullrich, A., J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzzelli, T. J. Dull, A. Gray, L. Coussens, Y. Liao, M. Tsubokawa, A. Mason & P. H. Seeburg. 1985. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756–761. 4 Ebina, Y., L. Ellis, K. Jarnagin, M. Ederly, L. Graf, E. Clauser, J. H. Ou, F. Masiarz, Y. W. Kan, I. D. Goldfine, R. A. Roth & W. J. Rutter. 1985. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signaling. Cell 40: 747–758. 5 Kasuga, M., F. A. Karlsson & C. R. Kahn. 1982. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215: 185–187. 6 Rospn, O. M., R. Herrera, Y. Olowe, L. M. Petruzzeli & M. H. Cobb. 1983. Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc. Natl. Acad. Sci. USA 80: 3237–3240. 7 White, M. F., H. U. Häring, M. Kasuga & C. R. Kahn. 1984. Kinetic properties and sites of autophosphorylation of the partially purified receptor from hepatoma cells. J. Biol. Chem. 259: 255–264. 8 Kahn, C. R. & M. F. White. 1988. The insulin receptor and the molecular mechanism of insulin action. J. Clin. Invest. 82: 1151–1156. 9 Myers, M. G., J. M. Backer, S. E. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger & M. F. White. 1992. Insulin receptor substrate IRS-1 associates with SH2-domain proteins. Proc. Natl. Acad. Sci. USA 89: 10350–10354. 10 Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein & M. F. White. 1991. Structure of the insulin receptor substrates IRS-1 defines a unique signal transduction protein. Nature 352: 73–77. 11 Shoelson, S. E., S. Chatterjee, M. Chaudhuri & M. F. White. 1992. IRS-1 YMXM sequence defines the substrate specificity of the insulin receptor kinase. Proc. Natl. Acad. Sci. USA 89: 2027–2031. 12 Carpenter, J. L., P. Gorden, M. Amherdt, E. van Obberghen, C. R. Kahn & L. Orci. 1978. [125I]insulin binding to cultured human lymphocytes: initial localization and fate of hormone determination by quantitative electron microscopic autoradiography. J. Clin. Invest. 61: 1057–1070. 13 Gorden, P., J. L. Carpentier, P. Freychet, A. Le Cam & L. Orci. 1978. Limited intracellular translocation of [125I]insulin: direct demonstration in isolated hepatocytes. Science 200: 782–785. 14 Carpentier, J. L. 1989. The cell biology of the insulin receptor. Diabetologia 32: 627–635. 15 Carpentier, J. L. 1993. The journey of the insulin receptor into the cell: from cellular biology to pathophysiology. Histochemistry 100: 169–184. 16 Gorden, P., J. L. Carpentier, E. van Obberghen, P. Barazzone, J. Roth & L. Orci. 1979. Insulin-induced loss of surface insulin receptors in the cultured human lymphocyte: quantitative morphological perturbations in the cell and the plasma membrane. J. Cell Sci. 39: 77–88. 17 Green, A. & J. M. Olefsky. 1982. Evidence for insulin-induced internalization and degradation of insulin receptors in rat adipocytes. Proc. Natl. Acad. Sci. USA 79: 427–431. 18 Wang, C. C., O. Sonne, J. A. Hedo, S. W. Cushman, & I. A. Simpson. 1983. Insulin-induced internalization of the insulin receptor in the isolated rat adipose cell. Detection of the internalized 138-kilodalton receptor subunit using a photoaffinity [125I]insulin. J. Biol. Chem. 258: 5129–5134. 19 Krupp, M. & M. D. Lane. 1981. On the mechanism of ligand-induced down-regulation of insulin receptor level on the liver cell. J. Biol. Chem. 256: 1689–1694. 20 Desbuquois, B., S. Lopez & H. Burlet. 1982. Ligand-induced translocation of insulin receptors in intact rat liver. J. Biol. Chem. 257: 10852–10860. 21 Carpentier, J. L., J. M. Dayer, U. Lang, R. Silverman, P. Gorden & L. Orci. 1984. Down regulation and recycling of insulin receptors: effect of monensin on IM-9 lymphocytes and U-937 monocyte-like cells. J. Biol. Chem. 259: 14190–14195. 22 Backer, J. M., C. R. Kahn & M. F. White. 1989. Tyrosine phosphorylation of the insulin receptor during insulin-stimulated internalization in rat hepatoma cells. J. Biol. Chem. 264: 1694–1701. 23 Hari, J. & R. A. Roth. 1987. Defective internalization of insulin and its receptor in cells expressing mutated insulin receptors lacking kinase activity. J. Biol. Chem. 262: 15341–15344. 24 McClain, D. A., H. Maegawa, J. Lee, T. J. Dull, A. Ullrich & J. M. Olefsky. 1987. A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosis. J. Biol. Chem. 262: 14663–14671. 25 Russel, D. S., R. Gherzi, E. Johnson, C. K. Chou & O. Rosen. 1987. The protein-tyrosine kinase activity of the insulin receptor is necessary for insulin-mediated receptor down-regulation. J. Biol. Chem. 262: 11833–11840. 26 Backer, J. M., C. R. Kahn & M. F. White. 1989. Tyrosine phosphorylation of the insulin receptor internalization. Studies in 2,4-dinitrophenol-treated cells. Proc. Natl. Acad. Sci. USA 86: 3209–3213. 27 Berhanu, P., A. Rohilla, D. Brandenburg & M. Aggerberk. 1988. A deletion mutation of the human insulin receptor causing loss of kinase activity does not impair internalization and processing. Diabetes 37(Suppl. 1): 2A. 28 Trischitta, V., K. Y. Wong, A. Brunetti, R. Scalisi, R. Vigneri & I. D. Goldfine. 1989. Endocytosis, recycling and degradation of the insulin receptor. Studies with monoclonal antireceptor antibodies that do not activate receptor. J. Biol. Chem. 264: 5041–5046. 29 Carpentier, J. L., J. P. Paccaud, P. Gorden, W. J. Rutter & L. Orci. 1992. Insulin-induced surface redistribution regulates internalization of the insulin receptor and requires its autophosphorylation. Proc. Natl. Acad. Sci. USA 89: 162–166. 30 Carpentier, J. L., J. P. Paccaud, J. Backer, A. Gilbert, L. Orci & C. R. Kahn. 1993. Two steps of insulin internalization depend on different domains of the β-subunit. J Cell Biol. 118: 831–839. 31 Carpentier, J. L., E. van Obberghen, P. Gorden & L. Orci. 1981. Surface redistribution of [125I]insulin in cultured human lymphocytes. J. Cell Biol. 91: 17–25. 32 Carpentier, J. L., M. Fehlmann, E. van Obberghen, P. Gorden & L. Orci. 1985. Redistribution of [125I]insulin on the surface of rat hepatocytes as a function of dissociation time. Diabetes 34: 1002–1007. 33 Fan, J. Y., J. L. Carpentier, P. Gorden, E. van Obberghen, N. M. Blackett, C. Grunfeld & L. Orci. 1982. Receptor-mediated endocytosis of insulin: the role of microvilli, coated pits and coated vesicles. Proc. Natl. Acad. Sci. USA 79: 7788–7791. 34 Goldstein, J. L., M. S. Brown, R. G. W. Anderson, D. N. Russei & W. J. Schneider. 1985. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1: 1–39. 35 Brown, M. S., R. G. W. Anderson & J. L. Goldstein. 1983. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32: 663–667. 36 Ohta, Y., T. P. Stossel & J. H. Hartwig. 1991. Ligand-sensitive binding of actin-binding protein to immunoglobulin G Fc receptor 1. Cell 67; 275–282. 37 Barazzone, P., J. L. Carpentier, P. Gorden, E. van Obberghen & L. Orci. 1980. Polar redistribution of 125Iodine labelled insulin on the plasma membrane of cultured human lymphocytes. Nature 286: 401–403. 38 Thies, R. S., N. J. Webster & D. A. McClain. 1990. A domain of the insulin receptor required for the endocytosis in rat fibroblasts. J. Biol. Chem. 265: 10132–10137. 39 Backer, J. M., C. R. Kahn, D. A. Cahill, A. Ullrich & M. F. White. 1990. Receptor mediated internalization of insulin requires a 12-amino acid sequence in the juxtamembrane region of the insulin receptor β-subunit. J. Biol. Chem. 265: 16450–16454. 40 Carpentier, J. L., P. Gordon, R. G. W. Anderson, J. L. Goldstein, M. S. Brown, S. Cohen & L. Orci. 1982. Co-localization of 125I-epidermal growth factor and ferritin low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J. Cell Biol. 95: 73–77. 41 Davis, C. G., I. R. Van Driel, D. W. Russel, M. S. Brown & J. L. Goldstein. 1987. The low density lipoprotein receptor. Identification of amino acids in cytoplasmic domain required for rapid endocytosis. J. Biol. Chem. 262: 4075–4082. 42 Ktistakis, N. T., D. Thomas & M. G. Roth. 1990. Characteristics of the tyrosine recognition signal for internalization of transmembrane surface glycoproteins. J. Cell Biol. 111: 1393–1407. 43 Jadot, M., W. M. Canfield, W. Gregory & S. Kornfeld. 1992. Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor. J. Biol. Chem. 267: 11069–11077. 44 Jing, S., R. T. Spencer, K. Miller, C. Hopkins & I. S. Trowbridge. 1990. Role of the human transferrin receptor cytoplasmic domain in endocytosis: Localization of a specific signal sequence for internalization. J. Cell Biol. 110: 283–294. 45 Lazarovits, J. & M. Roth. 1988. A single amino acid change in the cytoplasmic domain allows the influenza virus hemagglutinin to be endocytosed through coated pits. Cell 53: 743–752. 46 Lehmann, L. E., W. Eberle, S. Krull, V. Prill, B. Schmidt, C. Sander, K. von Figura & C. Peters. 1992. The internalization signal in the cytoplasmic tail of lysosomal acid phosphatase consists of the hexapeptide PGYRHV. EMBO 11: 4391–4399. 47 Chen, W. J., J. L. Goldstein & M. S. Brown. 1990. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. CHem. 2650: 3116–3123. 48 Collawn, J. F., A. Lai, D. Domingo, M. Fitch, S. Hatton & I. S. Trowbridge. 1993. YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31–34 enhances endocytosis. J. Biol. Chem. 268: 21686–21692. 49 Collawn, J. F., M. Stangel, L. A. Kuhn, V. Esekogwu, S. Jing, I. S. Trowbridge & J. A. Tainer. 1990. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63: 1061–1072. 50 Eberle, W., C. Sander, W. Klaus, B. Schmidt, K. von Figura & C. Peters. 1991. The essential tyrosine of the internalization signal in lysosomal acid phosphatase is part of a β turn. Cell 67: 1203–1209. 51 Bansal, A. & L. M. Gierasch. 1991. The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell 67: 1195–1201. 52 Robinson, M. S. 1992. Adaptins. Trends Cell Biol. 2: 293–297. 53 Beltzer, J. P. & M. Spiess. 1991. In vitro binding of the asialoglycoprotein receptor to the β adaptin of plasma membrane coated pits. EMBO 10: 3735–3742. 54 Peeler, J. S., W. C. Donzell & R. G. W. Anderson. 1993. The appendage domain of the AP-2 subunit is not required for assembly or invagination of clathrin-coated pits. J. Cell Biol. 120: 47–54. 55 Carpentier, J. L., D. P. Lew, J. P. Paccaud, R. Gil, B. J. Iacopetta, M. Kazatchkine, O. Stendahl & T. Pozzan. 1991. Internalization pathway of C3b receptors in human neutrophils and its transmodulation by chemoattractant receptor stimulation. Cell Regul. 2: 41–55. 56 Paccaud, J. P., W. Reith, B. Johansson, K. E. Magnusson, B. Mach & J. L. Carpentier. 1993. Clathrin-coated pit-mediated receptor internalization. Role of internalization signals and receptor mobility. J. Biol. Chem. 268: 23191–23196. 57 Rajagopalan, M., J. L. Neidigh & D. A. Mcclain. 1991. Amino acid sequences Gly-Pro-Leu-Tyr and Asn-Pro-Glu-Tyr in the submembranous domain of the insulin receptor are required for normal endocytosis. J. Biol. Chem. 266: 23068–23073. 58 Backer, J. M., S. E. Shoelson, M. A. Weiss, Q. Xin Hua, R. Bentley Cheatham, E. Haring, D. C. Cahill & M. F. White 1992. The insulin receptor juxtamembrane region contains two independent tyrosine/β-turn internalization signals. J. Cell Biol. 118: 831–839. 59 Goncalves, E., K. Yamada, H. S. Thatte, J. M. Backer, D. E. Golan, C. R. Kahn & S. E. Shoelson. 1993. Optimizing transmembrane domain helicity accelerates insulin receptor internalization and lateral mobility. Proc. Natl. Acad. Sci. USA 90: 5762–5766. 60 Paccaud, J. P., K. Siddle & J. L. Carpentier. 1992. Internalization of the human insulin receptor. The insulin independent pathway. J. Biol. Chem. 267: 13101–13106. 61 Rothman, J. E. & S. L. Schmid. 1986. Enzymatic recycling of clathrin from coated vesicles. Cell 46: 5–9. 62 Pearse, B. & M. S. Bretscher. 1981. Membrane recycling by coated vesicles. Annu. Rev. Biochem. 50: 85–101. 63 Robert, A., J. L. Carpentier, E. van Obberghen, B. Canivet, P. Gorden & L. Orci. 1985. The endosomal compartment of rat hepatocytes: the characterization in the course of (125I)insulin internalization. Exp. Cell Res. 159: 113–126. 64 Bergeron, J., J. Cruz, M. N. Khan & B. I. Posner. 1985. Uptake of insulin and other ligands into receptor-rich endocytic components of target cell: The endosomal apparatus. Annu. Rev. Physiol. 47: 383–403. 65 Helenius, A., I. Mellman, D. Wall & A. Hubbard. 1983. Endosomes. TIBS 8: 245–250. 66 Gruenberg, J. & K. E. Howell. 1989. Membrane traffic in endocytosis: insights from cell-free assays. Annu. Rev. Cell Biol. 5: 453–481. 67 Tycko, B. & F. R. Maxfield. 1982. Rapid acidification on endocytic vesicles containing α2-macroglobulin. Cell 28: 643–651. 68 Borden, L. A., R. Einstein, C. A. Gabel & F. R. Maxfield. 1990. Acidification-dependent dissociation of endocytosed insulin precedes that of endocytosed proteins bearing the mannose 6-phosphate recognition markers. J. Biol. Chem. 1265: 8497–8504. 69 Carpentier, J. L., P. Gorden, P. Freychet, A. Le Cam & L. Orci. 1979. Lysosomal association of internalized 125I-insulin in isolated rat hepatocytes: direct demonstration by quantitative electron microscopic autoradiography. J. Clin. Invest. 63: 1249–1261. 70 Carpentier, J. L., P. Gorden, P. Barazzone, P. Freychet, A. Le Cam & L. Orci. 1979. Intracellular localization of [125I]insulin in hepatocytes from intact rat liver. Proc. Natl. Acad. Sci. USA 76: 2803–2807. 71 Carpentier, J. L., H. Gazzano, E. van Obberghen, M. Fehlmann, P. Freychet & L. Orci. 1986. Intracellular pathway followed by the insulin receptor covalently coupled to 125I-photoreactive insulin during internalization and recycling. J. Cell Biol. 102: 989–995. 72 Lin, H. C., M. S. Moore, D. A. Sanan & R. G. W. Anderson. 1991. Reconstitution of clathrin-coated pit budding from plasma membranes. J. Cell Biol. 114: 881–891. 73 Podbilewicz, B. & I. Mellman. 1990. ATP and cytosol requirements for transferrin recycling in intact and disrupted MDCK cells. EMBO 9: 3477–3487. 74 Mayorga, L. S., R. Diaz & P. D. Stahl. 1989. Reconstitution of endosomal proteolysis in a cell-free system. J. Biol. Chem. 264: 5392–5399. 76 Schmid, S. L. 1992. The mechanism of receptor-mediated endocytosis: More questions than answers. Bioessays 14: 589–596. 77 Carpentier, J.-L. 1994. Insulin receptor internalization: molecular mechanisms and physiopathological implications. Diabetologia. In press. Citing Literature Volume733, Issue1Molecular and Cell Biological Aspects of Gastroenteropancreatic Neuroendocrine Tumor DiseaseSeptember 1994Pages 266-278 ReferencesRelatedInformation
Referência(s)