In Situ Carbon-Doped Mo(Se 0.85 S 0.15 ) 2 Hierarchical Nanotubes as Stable Anodes for High-Performance Sodium-Ion Batteries
2015; Wiley; Volume: 11; Issue: 42 Linguagem: Inglês
10.1002/smll.201501360
ISSN1613-6829
AutoresZhengtian Shi, Wenpei Kang, Jun Xu, Lianling Sun, Chunyan Wu, Li Wang, Yongqiang Yu, Denis Y. W. Yu, Wenjun Zhang, Chun‐Sing Lee,
Tópico(s)Advanced Battery Materials and Technologies
ResumoSmallVolume 11, Issue 42 p. 5667-5674 Full Paper In Situ Carbon-Doped Mo(Se0.85S0.15)2 Hierarchical Nanotubes as Stable Anodes for High-Performance Sodium-Ion Batteries Zheng-Tian Shi, Zheng-Tian Shi School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorWenpei Kang, Wenpei Kang Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. ChinaSearch for more papers by this authorJun Xu, Corresponding Author Jun Xu School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaE-mail: [email protected], [email protected], [email protected]Search for more papers by this authorLian-Ling Sun, Lian-Ling Sun School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorChunyan Wu, Chunyan Wu School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorLi Wang, Li Wang School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorYong-Qiang Yu, Yong-Qiang Yu School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorDenis Y. W. Yu, Corresponding Author Denis Y. W. Yu Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, P. R. ChinaE-mail: [email protected], [email protected], [email protected]Search for more papers by this authorWenjun Zhang, Wenjun Zhang Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. ChinaSearch for more papers by this authorChun-Sing Lee, Corresponding Author Chun-Sing Lee Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. ChinaE-mail: [email protected], [email protected], [email protected]Search for more papers by this author Zheng-Tian Shi, Zheng-Tian Shi School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorWenpei Kang, Wenpei Kang Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. ChinaSearch for more papers by this authorJun Xu, Corresponding Author Jun Xu School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaE-mail: [email protected], [email protected], [email protected]Search for more papers by this authorLian-Ling Sun, Lian-Ling Sun School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorChunyan Wu, Chunyan Wu School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorLi Wang, Li Wang School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorYong-Qiang Yu, Yong-Qiang Yu School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009 P. R. ChinaSearch for more papers by this authorDenis Y. W. Yu, Corresponding Author Denis Y. W. Yu Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, P. R. ChinaE-mail: [email protected], [email protected], [email protected]Search for more papers by this authorWenjun Zhang, Wenjun Zhang Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. ChinaSearch for more papers by this authorChun-Sing Lee, Corresponding Author Chun-Sing Lee Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. ChinaE-mail: [email protected], [email protected], [email protected]Search for more papers by this author First published: 09 September 2015 https://doi.org/10.1002/smll.201501360Citations: 97Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Sodium-ion batteries (SIBs) are promising energy storage devices, but suffer from poor cycling stability and low rate capability. In this work, carbon doped Mo(Se0.85S0.15)2 (i.e., Mo(Se0.85S0.15)2:C) hierarchical nanotubes have been synthesized for the first time and serve as a robust and high-performance anode material. The hierarchical nanotubes with diameters of 300 nm and wall thicknesses of 50 nm consist of numerous 2D layered nanosheets, and can act as a robust host for sodiation/desodiation cycling. The Mo(Se0.85S0.15)2:C hierarchical nanotubes deliver a discharge capacity of 360 mAh g−1 at a high current density of 2000 mA g−1 and keep a 81.8% capacity retention compared to that at a current density of 50 mA g−1, showing superior rate capability. Comparing with the second cycle discharge capacities, the nanotube anode can maintain capacities of 102.2%, 101.9%, and 97.8% after 100 cycles at current densities of 200, 500, and 1000 mA g−1, respectively. This work demonstrates the best cycling performance and high-rate sodium storage capabilities of MoSe2 for SIBs to date. The hollow interior, hierarchical organization, layered structure, and carbon doping are beneficial for fast Na+-ion and electron kinetics and are responsible for the stable cycling performance and high rate capabilities. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description smll201501360-sup-0001-S1.pdf408.7 KB Supplementary Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710. 2V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González, T. Rojo, Energy Environ. Sci. 2012, 5, 5884. 3N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 2012, 11, 512. 4D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431. 5Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V. Saraf, Z. Yang, J. Liu, Adv. Mater. 2011, 23, 3155. 6Y. Kim, K.-H. Ha, S. M. Oh, K. T. Lee, Chem. Eur. J. 2014, 20, 11980. 7J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, Angew. Chem. Int. Ed. 2013, 52, 4633. 8Y. Xu, Y. Zhu, Y. Liu, C. Wang, Adv. Energy Mater. 2013, 3, 128. 9J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai, H. Yang, Chem. Commun. 2012, 48, 7070. 10M. He, K. Kravchyk, M. Walter, M. V. Kovalenko, Nano Lett. 2014, 14, 1255. 11L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, Chem. Commun. 2012, 48, 3321. 12D. Su, H.-J. Ahn, G. Wang, Chem. Commun. 2013, 49, 3131. 13M. Gu, A. Kushima, Y. Shao, J.-G. Zhang, J. Liu, N. D. Browning, J. Li, C. Wang, Nano Lett. 2013, 13, 5203. 14B. Koo, S. Chattopadhyay, T. Shibata, V. B. Prakapenka, C. S. Johnson, T. Rajh, E. V. Shevchenko, Chem. Mater. 2013, 25, 245. 15M. Valvo, F. Lindgren, U. Lafont, F. Björefors, K. Edström, J. Power Sources 2014, 245, 967. 16S. Yuan, X. Huang, D. Ma, H. Wang, F. Meng, X. Zhang, Adv. Mater. 2014, 26, 2273. 17S. Hariharan, K. Saravanan, P. Balaya, Electrochem. Commun. 2013, 31, 5. 18H. Pan, X. Lu, X. Yu, Y.-S. Hu, H. Li, X.-Q. Yang, L. Chen, Adv. Energy Mater. 2013, 3, 1186. 19P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M. R. Palacín, Chem. Mater. 2011, 23, 4109. 20D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. Medvedev, O. Lev, Nat. Commun. 2013, 4, 2922. 21Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Energy Environ. Sci. 2015, 8, 1309. 22J.-S. Kim, G.-B. Cho, K.-W. Kim, J.-H. Ahn, G. Wang, H.-J. Ahn. Curr. Appl. Phys. 2011, 11, S215. 23T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, Z. Guo, ACS Nano 2014, 8, 8323. 24Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Adv. Funct. Mater. 2015, 25, 481. 25B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, J. Y. Lee, Adv. Mater. 2014, 26, 3854. 26D. Su, S. Dou, G. Wang, Chem. Commun. 2014, 50, 4192. 27Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033. 28S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater. 2011, 21, 3859. 29K. Tang, L. Fu, R. J. White, L. Yu, M.-M. Titirici, M. Antonietti, J. Maier, Adv. Energy Mater. 2012, 2, 873. 30C. Tan, H. Zhang, Chem. Soc. Rev. 2015, 44, 2713. 31X. Hu, W. Zhang, X. Liu, Y. Mei, Y. Huang, Chem. Soc. Rev. 2015, 44, 2376. 32P. Wang, H. Sun, Y. Ji, W. Li, X. Wang, Adv. Mater. 2014, 26, 964. 33H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Adv. Mater. 2015, 27, 3687. 34Z. Wan, J. Shao, J. Yun, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Small 2014, 10, 4975. 35C. Zhu, X. Mu, P. A. van Aken, Y. Yu, J. Maier, Angew. Chem. Int. Ed. 2014, 53, 2152. 36Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, Angew. Chem. 2014, 126, 13008. 37S. H. Choi, Y. N. Ko, J.-K. Lee, Y. C. Kang, Adv. Funct. Mater. 2015, 25, 1780. 38J. Wang, C. Luo, T. Gao, A. Langrock, A. C. Mignerey, C. Wang, Small 2015, 11, 473. 39X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Sci. Rep. 2015, 5, 9254. 40S. Zhang, X. Yu, H. Yu, Y. Chen, P. Gao, C. Li, C. Zhu, ACS Appl. Mater. Interfaces 2014, 6, 21880. 41Y. Shi, C. Hua, B. Li, X. Fang, C. Yao, Y. i Zhang, Y.-S. Hu, Z. Wang, L. Chen, D. Zhao, G. D. Stucky, Adv. Funct. Mater. 2013, 23, 1832. 42Y. N. Ko, S. H. Choi, S. B. Park, Y. C. Kang, Nanoscale 2014, 6, 10511. 43H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhang, Y. Jiang, J. Power Sources 2015, 283, 187. 44D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Nano Lett. 2013, 13, 1341. 45H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, X. Duan, J. Am. Chem. Soc. 2014, 136, 3756. 46M. Sevilla, A. B. Fuertes, Carbon 2009, 47, 2281. 47L. Lai, G. Huang, X. Wang, J. Weng, Carbon 2010, 48, 3145. 48X. Sun, Y. Li, Angew. Chem. Int. Ed. 2004, 43, 597. 49H. Li, Q. Zhang, X. Duan, X. Wu, X. Fan, X. Zhu, X. Zhuang, W. Hu, H. Zhou, A. Pan, X. Duan, J. Am. Chem. Soc. 2015, 137, 5284. 50J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. von Son Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, L. Bartels, Adv. Mater. 2014, 26, 1399. 51Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, L. Xie, Adv. Mater. 2014, 26, 2648. 52A. C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095. 53Y. Dong, M. Hu, b R. Ma, H. Cheng, S. Yang, Y. Y. Li, J. A. Zapien, CrystEngComm 2013, 15, 1324. 54H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 2013, 13, 3426. 55J. Xu, X. Yang, Q.-D. Yang, X. Huang, Y. Tang, W. Zhang, C.-S. Lee, Chem. Asian J. 2015, 10, 1490. 56V. Lesnyak, C. George, A. Genovese, M. Prato, A. Casu, S. Ayyappan, A. Scarpellini, L. Manna, ACS Nano 2014, 8, 8407. Citing Literature Volume11, Issue42November 11, 2015Pages 5667-5674 ReferencesRelatedInformation
Referência(s)