NR4A Subfamily of Receptors and their Modulators
2008; Wiley; Linguagem: Inglês
10.1002/9783527623297.ch14
ISSN1865-0562
Autores Tópico(s)Macrophage Migration Inhibitory Factor
ResumoChapter 14 NR4A Subfamily of Receptors and their Modulators Henri Mattes, Henri Mattes Novartis Pharma AG, GDC NS CHEM.2, WKL-122.2.43, Klybeckstrasse 141, 4057 Basel, SwitzerlandSearch for more papers by this author Henri Mattes, Henri Mattes Novartis Pharma AG, GDC NS CHEM.2, WKL-122.2.43, Klybeckstrasse 141, 4057 Basel, SwitzerlandSearch for more papers by this author Book Editor(s):Prof. Dr. Eckhard Ottow, Prof. Dr. Eckhard Ottow Bayer Schering Pharma AG, Medicinal Chemistry (S106/345), Müllerstrasse 178, 13342 Berlin, GermanySearch for more papers by this authorDr. Hilmar Weinmann, Dr. Hilmar Weinmann Bayer Schering Pharma AG, Medicinal Chemistry (S106/048A), Müllerstrasse 178, 13342 Berlin, GermanySearch for more papers by this author First published: 20 August 2008 https://doi.org/10.1002/9783527623297.ch14Citations: 1Book Series:Methods and Principles in Medicinal Chemistry Series Editor(s): Prof. Dr. Raimund Mannhold, Prof. Dr. Raimund Mannhold Molecular Drug Research Group, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, GermanySearch for more papers by this authorProf. Dr. Hugo Kubinyi, Prof. Dr. Hugo Kubinyi Donnersbergerstrasse 9, 67256 Weisenheim am Sand, GermanySearch for more papers by this authorProf. Dr. Gerd Folkers, Prof. Dr. Gerd Folkers Collegium Helveticum, STW/ETH Zurich, 8092 Zurich, SwitzerlandSearch for more papers by this author AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Functions of NR4A Receptor Subfamily Structures of NR4A1 and NR4A2 Modulators of the NR4A Subfamily Conclusions and Outlook References References Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M. and Chambon, P. (1995) The nuclear receptor superfamily: the second decade. Cell, 83, 835–839. 10.1016/0092-8674(95)90199-X CASPubMedWeb of Science®Google Scholar Giguere, V. (1999) Orphan nuclear receptors: from gene to function. Endocrine Reviews, 20, 689–725. 10.1210/er.20.5.689 CASPubMedWeb of Science®Google Scholar Hazel, T.G., Nathans, D. and Lau, L.F. (1988) A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proceedings of the National Academy of Sciences of the United States of America, 85, 8444–8448. 10.1073/pnas.85.22.8444 CASPubMedWeb of Science®Google Scholar Milbrandt, J. (1988) Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron, 1, 183–188. 10.1016/0896-6273(88)90138-9 CASPubMedWeb of Science®Google Scholar Law, S.W., Conneely, O.M., DeMayo, F.J. and O'Malley, B.W. (1992) Identification of a new brain-specific transcription factor, NURR1. Molecular Endocrinology, 6, 2129–2135. 10.1210/me.6.12.2129 CASPubMedWeb of Science®Google Scholar Ohkura, N., Ito, M., Tsukada, T., Sasaki, K., Yamaguchi, K. and Miki, K. (1996) Structure, mapping and expression of a human NOR-1 gene, the third member of the Nur77/NGFI-B family. Biochimica et Biophysica Acta, 1308, 205–214. 10.1016/0167-4781(96)00101-7 PubMedWeb of Science®Google Scholar Committee NN (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell, 97, 161–163. 10.1016/S0092-8674(00)80726-6 PubMedGoogle Scholar Borghaei, R.C., Sinai, R.S., Mochan, E. and Pease, E.A. (1998) Induction of mitogen-inducible nuclear orphan receptor by interleukin 1 in human synovial and gingival fibroblasts. Biochemical and Biophysical Research Communications, 251, 334–338. 10.1006/bbrc.1998.9477 CASPubMedWeb of Science®Google Scholar Fahrner, T.J., Carroll, S.L. and Milbrandt, J. (1990) The NGFI-B protein, an inducible member of the thyroid/steroid receptor family, is rapidly modified posttranslationally. Molecular and Cellular Biology, 10, 6454–6459. 10.1128/MCB.10.12.6454 CASPubMedWeb of Science®Google Scholar Hazel, T.G., Misra, R., Davis, I.J., Greenberg, M.E. and Lau, L.F. (1991) Nur77 is differentially modified in PC12 cells upon membrane depolarization and growth factor treatment. Molecular and Cellular Biology, 11, 3239–3246. 10.1128/MCB.11.6.3239 CASPubMedWeb of Science®Google Scholar Honkaniemi, J., Zhang, J.S., Longo, F.M. and Sharp, F.R. (2000) Stress induces zinc finger immediate early genes in the rat adrenal gland. Brain Research, 877, 203–208. 10.1016/S0006-8993(00)02673-1 CASPubMedWeb of Science®Google Scholar Kagaya, S., Ohkura, N., Tsukada, T., Miyagawa, M., Sugita, Y., Tsujimoto, G., Matsumoto, K., Saito, H. and Hashida, R. (2005) Prostaglandin A2 acts as a transactivator for NOR1 (NR4A3) within the nuclear receptor superfamily. Biological & Pharmaceutical Bulletin, 28, 1603–1607. 10.1248/bpb.28.1603 CASPubMedWeb of Science®Google Scholar Katagiri, Y., Hirata, Y., Milbrandt, J. and Guroff, G. (1997) Differential regulation of the transcriptional activity of the orphan nuclear receptor NGFI-B by membrane depolarization and nerve growth factor. The Journal of Biological Chemistry, 272, 31278–31284. 10.1074/jbc.272.50.31278 CASPubMedWeb of Science®Google Scholar Roche, E., Buteau, J., Aniento, I., Reig, J.A., Soria, B. and Prentki, M. (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic β-cell line INS-1. Diabetes, 48, 2007–2014. 10.2337/diabetes.48.10.2007 CASPubMedWeb of Science®Google Scholar Tetradis, S., Bezouglaia, O. and Tsingotjidou, A. (2001) Parathyroid hormone induces expression of the nuclear orphan receptor Nurr1 in bone cells. Endocrinology, 142, 663–670. 10.1210/endo.142.2.7926 CASPubMedWeb of Science®Google Scholar Tippetts, M.T., Varnum, B.C., Lim, R.W. and Herschman, H.R. (1988) Tumor promoter-inducible genes are differentially expressed in the developing mouse. Molecular and Cellular Biology, 8, 4570–4572. 10.1128/MCB.8.10.4570 CASPubMedWeb of Science®Google Scholar Williams, G.T. and Lau, L.F. (1993) Activation of the inducible orphan receptor gene nur77 by serum growth factors: dissociation of immediate-early and delayed-early responses. Molecular and Cellular Biology, 13, 6124–6136. 10.1128/MCB.13.10.6124 CASPubMedWeb of Science®Google Scholar Bandoh, S., Tsukada, T., Maruyama, K., Ohkura, N. and Yamaguchi, K. (1997) Mechanical agitation induces gene expression of NOR-1 and its closely related orphan nuclear receptors in leukemic cell lines. Leukemia, 11, 1453–1458. 10.1038/sj.leu.2400800 CASPubMedWeb of Science®Google Scholar Miyakoshi, J., Tsukada, T., Tachiiri, S., Bandoh, S., Yamaguchi, K. and Takebe, H. (1998) Enhanced NOR-1 gene expression by exposure of Chinese hamster cells to high-density 50 Hz magnetic fields. Molecular and Cellular Biochemistry, 181, 191–195. 10.1023/A:1006828400868 CASPubMedWeb of Science®Google Scholar Arkenbout, E.K., de Waard, V., van Bragt, M., van Achterberg, T.A., Grimbergen, J.M., Pichon, B., Pannekoek, H. and de Vries, C.J. (2002) Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation, 106, 1530–1535. 10.1161/01.CIR.0000028811.03056.BF CASPubMedWeb of Science®Google Scholar Lim, R.W., Yang, W.L. and Yu, H. (1995) Signal-transduction-pathway-specific desensitization of expression of orphan nuclear receptor TIS1. The Biochemical Journal, 308, 785–789. 10.1042/bj3080785 CASPubMedWeb of Science®Google Scholar Nakai, A., Kartha, S., Sakurai, A., Toback, F.G. and DeGroot, L.J. (1990) A human early response gene homologous to murine nur77 and rat NGFI-B, and related to the nuclear receptor superfamily. Molecular Endocrinology, 4, 1438–1443. 10.1210/mend-4-10-1438 CASPubMedWeb of Science®Google Scholar Winoto, A. (1997) Genes involved in T-cell receptor-mediated apoptosis of thymocytes and T-cell hybridomas. Seminars in Immunology, 9, 51–58. 10.1006/smim.1996.0053 CASPubMedGoogle Scholar Zetterstrom, R.H., Solomin, L., Mitsiadis, T., Olson, L. and Perlmann, T. (1996) Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Molecular Endocrinology, 10, 1656–1666. 10.1210/me.10.12.1656 PubMedWeb of Science®Google Scholar Bookout, A.L., Jeong, Y., Downes, M., Yu, R.T., Evans, R.M. and Mangelsdorf, D.J. (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell, 126, 789–799. 10.1016/j.cell.2006.06.049 CASPubMedWeb of Science®Google Scholar Hsu, H.C., Zhou, T. and Mountz, J.D. (2004) Nur77 family of nuclear hormone receptors. Current Drug Targets – Inflammation & Allergy, 3, 413–423. 10.2174/1568010042634523 CASPubMedGoogle Scholar Pei, L., Castrillo, A. and Tontonoz, P. (2006) Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Molecular Endocrinology, 20, 786–794. 10.1210/me.2005-0331 CASPubMedWeb of Science®Google Scholar Saucedo-Cardenas, O. and Conneely, O.M. (1996) Comparative distribution of NURR1 and NUR77 nuclear receptors in the mouse central nervous system. Journal of Molecular Neuroscience, 7, 51–63. 10.1007/BF02736848 CASPubMedWeb of Science®Google Scholar Zetterstrom, R.H., Solomin, L., Jansson, L., Hoffer, B.J., Olson, L. and Perlmann, T. (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science, 276, 248–250. 10.1126/science.276.5310.248 CASPubMedWeb of Science®Google Scholar Wallen, A.A., Castro, D.S., Zetterstrom, R.H., Karlen, M., Olson, L., Ericson, J. and Perlmann, T. (2001) Orphan nuclear receptor nurr1 is essential for ret expression in midbrain dopamine neurons and in the brain stem. Molecular and Cellular Neurosciences, 18, 649–663. 10.1006/mcne.2001.1057 CASPubMedWeb of Science®Google Scholar Cheng, L.E., Chan, F.K., Cado, D. and Winoto, A. (1997) Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. The EMBO Journal, 16, 1865–1875. 10.1093/emboj/16.8.1865 CASPubMedWeb of Science®Google Scholar Fernandez, P.M., Brunel, F., Jimenez, M.A., Saez, J.M., Cereghini, S. and Zakin, M.M. (2000) Nuclear receptors Nor1 and NGFI-B/Nur77 play similar, albeit distinct, roles in the hypothalamo-pituitary – adrenal axis. Endocrinology, 141, 2392–2400. 10.1210/en.141.7.2392 CASPubMedWeb of Science®Google Scholar Yang, X., Downes, M., Yu, R.T., Bookout, A.L., He, W., Straume, M., Mangelsdorf, D.J. and Evans, R.M. (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell, 126, 801–810. 10.1016/j.cell.2006.06.050 CASPubMedWeb of Science®Google Scholar Davis, I.J., Hazel, T.G., Chen, R.H., Blenis, J. and Lau, L.F. (1993) Functional domains and phosphorylation of the orphan receptor Nur77. Molecular Endocrinology, 7, 953–964. 10.1210/me.7.8.953 CASPubMedWeb of Science®Google Scholar Maltais, A. and Labelle, Y. (2000) Structure and expression of the mouse gene encoding the orphan nuclear receptor TEC. DNA and Cell Biology, 19, 121–130. 10.1089/104454900314636 CASPubMedWeb of Science®Google Scholar Paulsen, R.E., Weaver, C.A., Fahrner, T.J. and Milbrandt, J. (1992) Domains regulating transcriptional activity of the inducible orphan receptor NGFI-B. The Journal of Biological Chemistry, 267, 16491–16496. CASPubMedWeb of Science®Google Scholar Paulsen, R.F., Granas, K., Johnsen, H., Rolseth, V. and Sterri, S. (1995) Three related brain nuclear receptors, NGFI-B, Nurr1, and NOR-1, as transcriptional activators. Journal of Molecular Neuroscience, 6, 249–255. 10.1007/BF02736784 CASPubMedWeb of Science®Google Scholar Wilson, T.E., Day, M.L., Pexton, T., Padgett, K.A., Johnston, M. and Milbrandt, J. (1992) In vivo mutational analysis of the NGFI-A zinc fingers. The Journal of Biological Chemistry, 267, 3718–3724. CASPubMedWeb of Science®Google Scholar Wilson, T.E., Fahrner, T.J., Johnston, M. and Milbrandt, J. (1991) Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science, 252, 1296–1300. 10.1126/science.1925541 CASPubMedWeb of Science®Google Scholar Wilson, T.E., Mouw, A.R., Weaver, C.A., Milbrandt, J. and Parker, K.L. (1993) The orphan nuclear receptor NGFI-B regulates expression of the gene encoding steroid 21-hydroxylase. Molecular and Cellular Biology, 13, 861–868. 10.1128/MCB.13.2.861 CASPubMedWeb of Science®Google Scholar Maira, M., Martens, C., Philips, A. and Drouin, J. (1999) Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Molecular and Cellular Biology, 19, 7549–7557. 10.1128/MCB.19.11.7549 CASPubMedWeb of Science®Google Scholar Philips, A., Lesage, S., Gingras, R., Maira, M.H., Gauthier, Y., Hugo, P. and Drouin, J. (1997) Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Molecular and Cellular Biology, 17, 5946–5951. 10.1128/MCB.17.10.5946 CASPubMedWeb of Science®Google Scholar Perlmann, T. and Jansson, L. (1995) A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and NURR1. Genes and Development, 9, 769–782. 10.1101/gad.9.7.769 CASPubMedWeb of Science®Google Scholar Suzuki, S., Suzuki, N., Mirtsos, C., Horacek, T., Lye, E., Noh, S.-K., Ho, A., Bouchard, D., Mak, T.W. and Yeh, W.-C. (2003) Nur77 as a survival factor in tumor necrosis factor signaling. Proceedings of the National Academy of Sciences of the United States of America, 100, 8276–8280. 10.1073/pnas.0932598100 CASPubMedWeb of Science®Google Scholar Ke, N., Claassen, G., Yu, D.-H., Albers, A., Fan, W., Tan, P., Grifman, M., Hu, X., DeFife, K., Nguy, V., Meyhack, B., Brachat, A., Wong-Staal, F. and Li, Q.-X. (2004) Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Research, 64, 8208–8212. 10.1158/0008-5472.CAN-04-2134 CASPubMedWeb of Science®Google Scholar Bras, A., Albar, J.P., Leonardo, E., de Buitrago, G.G. and Martinez, A.C. (2000) Ceramide induced cell death is independent of the Fas/Fas ligand pathway and is prevented by Nur77 overexpression in A20 B cells. Cell Death and Differentiation, 7, 262–271. 10.1038/sj.cdd.4400653 CASPubMedWeb of Science®Google Scholar Zhang, J., DeYoung, A., Kasler, H.G., Kabra, N.H., Kuang, A.A., Diehl, G., Sohn, S.J., Bishop, C. and Winoto, A. (1999) Receptors-mediated apoptosis in T lymphocytes. Cold Spring Harbor Symposia on Quantitative Biology, 64, 363–371. 10.1101/sqb.1999.64.363 CASPubMedWeb of Science®Google Scholar Chintharlapalli, S., Burghardt, R., Papineni, S., Ramaiah, S., Yoon, K. and Safe, S. (2005) Activation of Nur77 by selected 1,1-bis(3′-indolyl)-1-(p-substituted phenyl)methanes induces apoptosis through nuclear pathways. The Journal of Biological Chemistry, 280, 24903–24914. 10.1074/jbc.M500107200 CASPubMedWeb of Science®Google Scholar Li, H., Kolluri, S.K., Gu, J., Dawson, M.I., Cao, X., Hobbs, P.D., Lin, B., Chen, G., Lu, J. and Lin, F. (2000) Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science, 289, 1159–1164. 10.1126/science.289.5482.1159 CASPubMedWeb of Science®Google Scholar Lin, B., Kolluri, S.K., Lin, F., Liu, W., Han, Y.-H., Cao, X., Dawson, M.I., Reed, J.C. and Zhang, X. (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell, 116, 527–540. 10.1016/S0092-8674(04)00162-X CASPubMedWeb of Science®Google Scholar Wu, Q., Li, Y., Liu, R., Agadir, A., Lee, M.O., Liu, Y. and Zhang, X. (1997) Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. The EMBO Journal, 16, 1656–1669. 10.1093/emboj/16.7.1656 CASPubMedWeb of Science®Google Scholar Calnan, B.J., Szychowski, S., Chan, F.K.-M., Cado, D. and Winoto, A. (1995) A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity, 3, 273–282. 10.1016/1074-7613(95)90113-2 CASPubMedWeb of Science®Google Scholar Crawford, P.A., Sadovsky, Y., Woodson, K., Lee, S.L. and Milbrandt, J. (1995) Adrenocortical function and regulation of the steroid 21β-hydroxylase gene in NGFI-B-deficient mice. Molecular and Cellular Biology, 15, 4331–4336. 10.1128/MCB.15.8.4331 CASPubMedWeb of Science®Google Scholar Lee, S.L., Wesselschmidt, R.L., Linette, G.P., Kanagawa, O., Russell, J.H. and Milbrandt, J. (1995) Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science, 269, 532–535. 10.1126/science.7624775 CASPubMedWeb of Science®Google Scholar Castillo, S.O., Baffi, J.S., Palkovits, M., Goldstein, D.S., Kopin, I.J., Witta, J., Magnuson, M.A. and Nikodem, V.M. (1998) Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Molecular and Cellular Neurosciences, 11, 36–46. Web of Science®Google Scholar Saucedo-Cardenas, O., Quintana-Hau, J.D., Le, W.D., Smidt, M.P., Cox, J.J., De Mayo, F., Burbach, J.P. and Conneely, O.M. (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 4013–4018. 10.1073/pnas.95.7.4013 CASPubMedWeb of Science®Google Scholar Nsegbe, E., Wallen-Mackenzie, A., Dauger, S., Roux, J.C., Shvarev, Y., Lagercrantz, H., Perlmann, T. and Herlenius, E. (2004) Congenital hypoventilation and impaired hypoxic response in Nurr1 mutant mice. The Journal of Physiology, 556, 43–59. 10.1113/jphysiol.2003.058560 CASPubMedWeb of Science®Google Scholar Ponnio, T., Burton, Q., Pereira, F.A., Wu, D.K. and Conneely, O.M. (2002) The nuclear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear. Molecular and Cellular Biology, 22, 935–945. 10.1128/MCB.22.3.935-945.2002 CASPubMedWeb of Science®Google Scholar DeYoung, R.A., Baker, J.C., Cado, D. and Winoto, A. (2003) The orphan steroid receptor Nur77 family member Nor-1 is essential for early mouse embryogenesis. The Journal of Biological Chemistry, 278, 47104–47109. 10.1074/jbc.M307496200 CASPubMedWeb of Science®Google Scholar Ponnio, T. and Conneely, O.M. (2004) Nor-1 regulates hippocampal axon guidance, pyramidal cell survival, and seizure susceptibility. Molecular and Cellular Biology, 24, 9070–9078. 10.1128/MCB.24.20.9070-9078.2004 CASPubMedWeb of Science®Google Scholar Stocco, C.O., Zhong, L., Sugimoto, Y., Ichikawa, A., Lau, L.F. and Gibori, G. (2000) Prostaglandin F2α-induced expression of 20α-hydroxysteroid dehydrogenase involves the transcription factor NUR77. The Journal of Biological Chemistry, 275, 37202–37211. 10.1074/jbc.M006016200 CASPubMedWeb of Science®Google Scholar Bassett, M.H., Suzuki, T., Sasano, H., White, P.C. and Rainey, W.E. (2004) The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Molecular Endocrinology, 18, 279–290. 10.1210/me.2003-0005 CASPubMedWeb of Science®Google Scholar Martin, L.J. and Tremblay, J.J. (2005) The human 3β-hydroxysteroid dehydrogenase/Δ5–Δ4 isomerase type 2 promoter is a novel target for the immediate early orphan nuclear receptor Nur77 in steroidogenic cells. Endocrinology, 146, 861–869. 10.1210/en.2004-0859 CASPubMedWeb of Science®Google Scholar Song, K.H., Park, Y.Y., Park, K.C., Hong, C.Y., Park, J.H., Shong, M., Lee, K. and Choi, H.S. (2004) The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Molecular Endocrinology, 18, 1929–1940. 10.1210/me.2004-0043 CASPubMedWeb of Science®Google Scholar Sakurada, K., Ohshima-Sakurada, M., Palmer, T.D. and Gage, F.H. (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development (Cambridge, England), 126, 4017–4026. Web of Science®Google Scholar Hermanson, E., Borgius, L., Bergsland, M., Joodmardi, E. and Perlmann, T. (2006) Neuropilin1 is a direct downstream target of Nurr1 in the developing brain stem. Journal of Neurochemistry, 97, 1403–1411. 10.1111/j.1471-4159.2006.03829.x CASPubMedWeb of Science®Google Scholar Luo, Y., Henricksen, L.A., Giuliano, R.E., Prifti, L., Callahan, L.M. and Federoff, H.J. (2007) VIP is a transcriptional target of Nurr1 in dopaminergic cells. Experimental Neurology, 203, 221–232. 10.1016/j.expneurol.2006.08.005 CASPubMedWeb of Science®Google Scholar Rostene, W.H. (1984) Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP). Progress in Neurobiology, 22, 103–129. 10.1016/0301-0082(84)90022-4 CASPubMedWeb of Science®Google Scholar Moody, T.W., Hill, J.M. and Jensen, R.T. (2003) VIP as a trophic factor in the CNS and cancer cells. Peptides, 24, 163–177. 10.1016/S0196-9781(02)00290-5 CASPubMedWeb of Science®Google Scholar Wu, Y., Ghosh, S., Nishi, Y., Yanase, T., Nawata, H. and Hu, Y. (2005) The Orphan Nuclear Receptors NURR1 and NGFI-B modulate aromatase gene expression in ovarian granulosa cells: a possible mechanism for repression of aromatase expression upon luteinizing hormone surge. Endocrinology, 146, 237–246. 10.1210/en.2004-0889 CASPubMedWeb of Science®Google Scholar Sacchetti, P., Brownschidle, L.A., Granneman, J.G. and Bannon, M.J. (1999) Characterization of the 5′-flanking region of the human dopamine transporter gene. Brain Research. Molecular Brain Research, 74, 167–174. 10.1016/S0169-328X(99)00275-2 CASPubMedWeb of Science®Google Scholar Sacchetti, P., Mitchell, T.R., Granneman, J.G. and Bannon, M.J. (2001) Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. Journal of Neurochemistry, 76, 1565–1572. 10.1046/j.1471-4159.2001.00181.x CASPubMedWeb of Science®Google Scholar Hermanson, E., Joseph, B., Castro, D., Lindqvist, E., Aarnisalo, P., Wallen, A., Benoit, G., Hengerer, B., Olson, L. and Perlmann, T. (2003) Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Experimental Cell Research, 288, 324–334. 10.1016/S0014-4827(03)00216-7 CASPubMedWeb of Science®Google Scholar Joseph, B., Wallen-Mackenzie, A., Benoit, G., Murata, T., Joodmardi, E., Okret, S. and Perlmann, T. (2003) p57Kip2 cooperates with Nurr1 in developing dopamine cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 15619–15624. 10.1073/pnas.2635658100 CASPubMedWeb of Science®Google Scholar Lammi, J., Huppunen, J. and Aarnisalo, P. (2004) Regulation of the osteopontin gene by the orphan nuclear receptor NURR1 in osteoblasts. Molecular Endocrinology, 18, 1546–1557. 10.1210/me.2003-0247 CASPubMedWeb of Science®Google Scholar Pirih, F.Q., Tang, A., Ozkurt, I.C., Nervina, J.M. and Tetradis, S. (2004) Nuclear orphan receptor nurr1 directly transactivates the osteocalcin gene in osteoblasts. The Journal of Biological Chemistry, 279, 53167–53174. 10.1074/jbc.M405677200 CASPubMedWeb of Science®Google Scholar Xu, L., Glass, C.K. and Rosenfeld, M.G. (1999) Coactivator and co-repressor complexes in nuclear receptor function. Current Opinion in Genetics & Development, 9, 140–147. 10.1016/S0959-437X(99)80021-5 CASPubMedWeb of Science®Google Scholar Moras, D. and Gronemeyer, H. (1998) The nuclear receptor ligand-binding domain: structure and function. Current Opinion in Cell Biology, 10, 384–391. 10.1016/S0955-0674(98)80015-X CASPubMedWeb of Science®Google Scholar Nolte, R.T., Wisely, G.B., Westin, S., Cobb, J.E., Lambert, M.H., Kurokawa, R., Rosenfeld, M.G., Willson, T.M., Glass, C.K. and Milburn, M.V. (1998) Ligand binding and co-activator assembly of the peroxisome proliferatoractivated receptor-γ. Nature, 395, 137–143. 10.1038/25931 CASPubMedWeb of Science®Google Scholar Shiau, A.K., Barstad, D., Loria, P.M., Cheng, L., Kushner, P.J., Agard, D.A. and Greene, G.L. (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 95, 927–937. 10.1016/S0092-8674(00)81717-1 CASPubMedWeb of Science®Google Scholar Wang, Z., Benoit, G., Liu, J., Prasad, S., Aarnisalo, P., Liu, X., Xu, H., Walker, N.P. and Perlmann, T. (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature, 423, 555–560. 10.1038/nature01645 CASPubMedWeb of Science®Google Scholar Baker, K.D., Shewchuk, L.M., Kozlova, T., Makishima, M., Hassell, A., Wisely, B., Caravella, J.A., Lambert, M.H., Reinking, J.L., Krause, H., Thummel, C.S., Willson, T.M. and Mangelsdorf, D.J. (2003) The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell, 113, 731–742. 10.1016/S0092-8674(03)00420-3 CASPubMedWeb of Science®Google Scholar Flaig, R., Greschik, H., Peluso-Iltis, C. and Moras, D. (2005) Structural basis for the cell-specific activities of the NGFI-B and the Nurr1 ligand-binding domain. The Journal of Biological Chemistry, 280, 19250–19258. 10.1074/jbc.M413175200 CASPubMedWeb of Science®Google Scholar Renaud, J.P., Harris, J.M., Downes, M., Burke, L.J. and Muscat, G.E. (2000) Structure-function analysis of the Rev-erbA and RVR ligand-binding domains reveals a large hydrophobic surface that mediates corepressor binding and a ligand cavity occupied by side chains. Molecular Endocrinology, 14, 700–717. CASPubMedWeb of Science®Google Scholar Castro, D.S., Arvidsson, M., Bondesson Bolin, M. and Perlmann, T. (1999) Activity of the Nurr1 carboxyl-terminal domain depends on cell type and integrity of the activation function 2. The Journal of Biological Chemistry, 274, 37483–37490. 10.1074/jbc.274.52.37483 CASPubMedWeb of Science®Google Scholar Harris, J.M., Lau, P., Chen, S.L. and Muscat, G.E. (2002) Characterization of the retinoid orphan-related receptor-α coactivator binding interface: a structural basis for ligand-independent transcription. Molecular Endocrinology, 16, 998–1012. 10.1210/me.16.5.998 CASPubMedWeb of Science®Google Scholar Codina, A., Benoit, G., Gooch, J.T., Neuhaus, D., Perlmann, T. and Schwabe, J.W. (2004) Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting. The Journal of Biological Chemistry, 279, 53338–53345. 10.1074/jbc.M409096200 CASPubMedWeb of Science®Google Scholar Pei, L., Castrillo, A., Chen, M., Hoffmann, A. and Tontonoz, P. (2005) Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. The Journal of Biological Chemistry, 280, 29256–29262. 10.1074/jbc.M502606200 CASPubMedWeb of Science®Google Scholar Maheux, J., Ethier, I., Rouillard, C. and Levesque, D. (2005) Induction patterns of transcription factors of the nur family (nurr1, nur77, and nor-1) by typical and atypical antipsychotics in the mouse brain: implication for their mechanism of action. The Journal of Pharmacology and Experimental Therapeutics, 313, 460–473. 10.1124/jpet.104.080184 CASPubMedWeb of Science®Google Scholar Beaudry, G., Langlois, M.C., Weppe, I., Rouillard, C. and Levesque, D. (2000) Contrasting patterns and cellular specificity of transcriptional regulation of the nuclear receptor nerve growth factor-inducible B by haloperidol and clozapine in the rat forebrain. Journal of Neurochemistry, 75, 1694–1702. 10.1046/j.1471-4159.2000.0751694.x CASPubMedWeb of Science®Google Scholar Kim, S.Y., Choi, K.C., Chang, M.S., Kim, M.H., Kim, S.Y., Na, Y.-S., Lee, J.E., Jin, B.K., Lee, B.-H. and Baik, J.-H. (2006) The dopamine D2 receptor regulates the development of dopaminergic neurons via extracellular signal-regulated kinase and Nurr1 activation. The Journal of Neuroscience, 26, 4567–4576. 10.1523/JNEUROSCI.5236-05.2006 CASPubMedWeb of Science®Google Scholar Pearen, M.A., Ryall, J.G., Maxwell, M.A., Ohkura, N., Lynch, G.S. and Muscat, G.E.O. (2006) The orphan nuclear receptor, NOR-1, is a target of β-adrenergic signaling in skeletal muscle. Endocrinology, 147, 5217–5227. 10.1210/en.2006-0447 CASPubMedWeb of Science®Google Scholar Ralph, J.A., McEvoy, A.N., Kane, D., Bresnihan, B., FitzGerald, O. and Murphy, E.P. (2005) Modulation of orphan nuclear receptor NURR1 expression by methotrexate in human inflammatory joint disease involves adenosine A2A receptor-mediated responses. Journal of Immunology (Baltimore, Md: 1950), 175, 555–565. 10.4049/jimmunol.175.1.555 CASPubMedWeb of Science®Google Scholar Ordentlich, P., Yan, Y., Zhou, S. and Heyman, R.A. (2003) Identification of the antineoplastic agent 6-mercaptopurine as an activator of the orphan nuclear hormone receptor Nurr1. The Journal of Biological Chemistry, 278, 24791–24799. 10.1074/jbc.M302167200 CASPubMedWeb of Science®Google Scholar Wansa, K.D., Senali, A. and Muscat, G.E.O. (2005) TRAP220 is modulated by the antineoplastic agent 6-mercaptopurine, and mediates the activation of the NR4A subgroup of nuclear receptors. Journal of Molecular Endocrinology, 34, 835–846. 10.1677/jme.1.01739 CASPubMedWeb of Science®Google Scholar Zhao, Y., Zhang, H., Liu, Y., Li, J. and Xu, Q. (2005) Molecular signaling mechanism activating Nurr1 expression by forskolin in MN9D cells. Zhongguo Yaolixue Tongbao, 21, 922–926. CASGoogle Scholar Wattenberg, L.W. (1975) Effects of dietary constituents on the metabolism of chemical carcinogens. Cancer Research, 35 (11 Pt 2), 3326–3331. CASPubMedWeb of Science®Google Scholar Ge, X., Yannai, S., Rennert, G., Gruener, N. and Fares, F.A. (1996) 3,3′-Diindolylmethane induces apoptosis in human cancer cells. Biochemical and Biophysical Research Communications, 228, 153–158. 10.1006/bbrc.1996.1631 CASPubMedWeb of Science®Google Scholar Qin, C., Morrow, D., Stewart, J., Spencer, K., Porter, W., Smith, R., III, Phillips, T., Abdelrahim, M., Samudio, I. and Safe, S. (2004) A new class of peroxisome proliferator-activated receptor γ (PPARγ) agonists that inhibit growth of breast cancer cells: 1,1-bis(3′-indolyl)-1-(p-substituted phenyl)methanes. Molecular Cancer Therapeutics, 3, 247–259. 10.4161/cbt.3.3.544 CASPubMedWeb of Science®Google Scholar Chintharlapalli, S., Smith, R., III, Samudio, I., Zhang, W. and Safe, S. (2004) 1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes induce peroxisome proliferator-activated receptor γ -mediated growth inhibition, transactivation, and differentiation markers in colon cancer cells. Cancer Research, 64, 5994–6001. 10.1158/0008-5472.CAN-04-0399 CASPubMedWeb of Science®Google Scholar Eyrolles, L., Kagechika, H., Kawachi, E., Fukasawa, H., Iijima, T., Matsushima, Y., Hashimoto, Y. and Shudo, K. (1994) Retinobenzoic acids. 6. Retinoid antagonists with a heterocyclic ring. Journal of Medicinal Chemistry, 37, 1508–1517. 10.1021/jm00036a017 CASPubMedWeb of Science®Google Scholar Choi, H.K., Won, L.A., Kontur, P.J., Hammond, D.N., Wainer, B.H., Hoffmann, P.C. and Heller, A. (1991) Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Research, 552, 67–76. 10.1016/0006-8993(91)90661-E CASPubMedWeb of Science®Google Scholar Mattes, H., Dubois, C. and Hengerer, B. (2006) Identification of a potent activator of the orphan nuclear receptor Nurr1. Chem Med Chem, 1, 955–958. 10.1002/cmdc.200600078 PubMedWeb of Science®Google Scholar Hintermann, S., Chiesi, M., von Krosigk, U., Mathe, D., Felber, R. and Hengerer, B. (2007) Identification of a series of highly potent activators of the Nurr1 signaling pathway. Bioorganic & Medicinal Chemistry Letters, 17, 193–196. 10.1016/j.bmcl.2006.09.062 CASPubMedWeb of Science®Google Scholar Wallen-Mackenzie, A., de Urquiza, A.M., Petersson, S., Rodriguez, F.J., Friling, S. and Wagner, J. (2003) Nurr1–RXR heterodimers mediate RXR ligand-induced signaling in neuronal cells. Genes and Development, 17, 3036–3047. 10.1101/gad.276003 CASPubMedWeb of Science®Google Scholar Ethier, I., Kagechika, H., Shudo, K., Rouillard, C. and Levesque, D. (2004) Docosahexaenoic acid reduces haloperidol-induced dyskinesias in mice: involvement of Nur77 and retinoid receptors. Biological Psychiatry, 56, 522–526. 10.1016/j.biopsych.2004.06.036 CASPubMedWeb of Science®Google Scholar Morita, K., Kawana, K., Sodeyama, M., Shimomura, I., Kagechika, H. and Makishima, M. (2005) Selective allosteric ligand activation of the retinoid X receptor heterodimers of NGFI-B and Nurr1. Biochemical Pharmacology, 71, 98–107. 10.1016/j.bcp.2005.10.017 CASPubMedWeb of Science®Google Scholar Citing Literature Nuclear Receptors as Drug Targets ReferencesRelatedInformation
Referência(s)