Artigo Acesso aberto Revisado por pares

A Robust, Efficient, and Highly Enantioselective Method for Synthesis of Homopropargyl Amines

2012; Wiley; Volume: 51; Issue: 27 Linguagem: Inglês

10.1002/anie.201202694

ISSN

1521-3773

Autores

Erika M. Vieira, Fredrik Hæffner, Marc L. Snapper, Amir H. Hoveyda,

Tópico(s)

Chemical Synthesis and Analysis

Resumo

Angewandte Chemie International EditionVolume 51, Issue 27 p. 6618-6621 Communication A Robust, Efficient, and Highly Enantioselective Method for Synthesis of Homopropargyl Amines† Erika M. Vieira, Erika M. Vieira Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorDr. Fredrik Haeffner, Dr. Fredrik Haeffner Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorProf. Marc L. Snapper, Prof. Marc L. Snapper Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorProf. Amir H. Hoveyda, Corresponding Author Prof. Amir H. Hoveyda [email protected] Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)===Search for more papers by this author Erika M. Vieira, Erika M. Vieira Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorDr. Fredrik Haeffner, Dr. Fredrik Haeffner Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorProf. Marc L. Snapper, Prof. Marc L. Snapper Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Search for more papers by this authorProf. Amir H. Hoveyda, Corresponding Author Prof. Amir H. Hoveyda [email protected] Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)===Search for more papers by this author First published: 23 May 2012 https://doi.org/10.1002/anie.201202694Citations: 58 † Financial support was provided by the NIH (GM-57212). We are grateful to Dr. B. Li for securing X-ray structures and to Frontier Scientific, Inc. for gifts of the allenylboron reagent. We thank Boston College Research Services for providing access to computational facilities. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Graphical Abstract Fast, robust, selective: Copper-catalyzed enantioselective additions of homopropargyl groups to a wide range of aldimines proceed readily and with high enantioselectivity. The catalytic method is scalable and practical, the allenylboron reagent is commercially available, and conversion into amines is inexpensive and high-yielding. References 1 1aT. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753– 819; 1b Chiral Amine Synthesis (Ed.: ), Wiley-VCH, Weinheim, 2010. 2For example, see: indolizidine alkaloid family: 2aY. Song, S. Okamoto, F. Sato, Tetrahedron Lett. 2002, 43, 8635– 8637; subcosine II: 2bL. Cui, C. Li, L. Zhang, Angew. Chem. 2010, 122, 9364– 9367; Angew. Chem. Int. Ed. 2010, 49, 9178– 9181; L-forosamine: 2cM. J. Zacuto, D. Tomita, Z. Pirzada, F. Xu, Org. Lett. 2010, 12, 684– 687; hederacine B: 2dM. Yamashita, T. Yamashita, S. Aoyagi, Org. Lett. 2011, 13, 2204– 2207. 3For representative cases, see: 3aA. Voituriez, A. Pérez-Luna, F. Ferreira, C. Botuha, F. Chemla, Org. Lett. 2009, 11, 931– 934; 3bD. R. Fandrick, C. S. Johnson, K. R. Fandrick, J. T. Reeves, Z. Tan, H. Lee, J. J. Song, N. K. Yee, C. H. Senanayake, Org. Lett. 2010, 12, 748– 751; 3cM. Cyklinsky, C. Botuha, F. Chemla, F. Ferreira, A. Pérez-Luna, Synlett 2011, 2681– 2684. 4For a review on catalytic enantioselective propargyl additions, see: C.-H. Ding, X.-L. Hou, Chem. Rev. 2011, 111, 1914– 1937. 5H. Kagoshima, T. Uzawa, T. Akiyama, Chem. Lett. 2002, 298– 299. 6H. M. Wisniewska, E. R. Jarvo, Chem. Sci. 2011, 2, 807– 810. 7A single case has been reported involving an acylhydrazone as the substrate and the relatively moisture-sensitive trichlorosilylallene as the reagent; the phenyl-substituted homopropargyl amine was obtained in 53 % yield and 89:11 e.r. See: 7aJ. Chen, B. Captain, N. Takenaka, Org. Lett. 2011, 13, 1654– 1657. Furthermore, in a recent study, homopropargyl amines were obtained as minor byproducts; see: 7bY.-Y. Huang, A. Chakrabarti, N. Morita, U. Schneider, S. Kobayashi, Angew. Chem. 2011, 123, 11317– 11320; Angew. Chem. Int. Ed. 2011, 50, 11121– 11124. 8For an example of catalytic enantioselective synthesis of propargyl glycine derivatives through the use of chiral-phase transfer catalysts, see: S. L. Castle, G. S. C. Srikanth, Org. Lett. 2003, 5, 3611– 3614. 9For the use of C1-symmetric NHC–Cu complexes in enantioselective synthesis of CC, CSi, and CB bond formation, respectively, see: 9aK.-s. Lee, A. H. Hoveyda, J. Org. Chem. 2009, 74, 4455– 4462; 9bK.-s. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 2898– 2900; 9cJ. M. O'Brien, K.-s. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10630– 10633. 10E. M. Vieira, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 3332– 3335. 11The addition can be performed on gram-scale with the catalyst derived from CuCl (0.25 mol % loading, 10 h, under otherwise the same conditions as shown in Scheme 2), affording 4 a in 81 % yield and more than 98:2 e.r (without chromatography). 12For an overview regarding the utility of N-phosphinoylimines in chemical synthesis, see: S. M. Weinreb, R. K. Orr, Synthesis 2005, 1205– 1227. 13Additionally, 6 is obtained in more than 98 % yield and 96.5:3.5 e.r., 9 is isolated in 88 % yield and 98:2 e.r., and 12 is formed in 75 % yield and 98:2 e.r. (>98 % conv. and <2 % allene addition in all cases). See the Supporting Information for additional details. 14For the role of MeOH in the catalytic cycle, see Ref. [10]. 15B. Jung, A. H. Hoveyda, J. Am. Chem. Soc. 2012, 134, 1490– 1493. 16See the Supporting Information for details. 17Since protonation of the intermediate NHCCuallene by MeOH does not constitute a major pathway, it is likely that N-phosphinoylimines are associated to the Lewis acidic transition metal when an NHCCu species is generated, leading to an intramolecular allyl transfer. Such considerations, together with the high levels of enantioselectivity, suggest that open transition structures are likely not involved. For a related discussion, see: E. Vrancken, H. Gérard, D. Linder, S. Ouizem, N. Alouane, E. Roubineau, K. Bentayeb, J. Marrot, P. Mangeney, J. Am. Chem. Soc. 2011, 133, 10790– 10802. 18For catalytic processes that involve the use of CuII salts and bis(pinacolato)boron, see: 18aH. Chea, H.-S. Sim, J. Yun, Bull. Korean Chem. Soc. 2010, 31, 551– 552; 18bA. Guzman-Martinez, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10634– 10637; 18cI. Ibrahem, P. Breistein, A. Cordova, Angew. Chem. 2011, 123, 12242– 12247; Angew. Chem. Int. Ed. 2011, 50, 12036– 12041. 19A possible route for reduction of CuII involves reaction of NHC–CuIICl(OtBu) with 1 to generate (pin)B-OtBu and NHC–CuIICl(allene). Subsequent homolytic CuC bond cleavage affords NHC–CuICl and the product from allene dimerization. 20D. Yang, F. Chen, Z.-M. Dong, D.-W. Zhang, J. Org. Chem. 2004, 69, 2221– 2223. 21For a review on the significance of β-amino acids, see: D. Seebach, A. K. Beck, D. J. Bierbaum, Chem. Biodiversity 2004, 1, 1111– 1239. 22For synthesis and biological activity of aza-epothilones, see: D. Schinzer, K.-H. Altmann, F. Stuhlmann, A. Bauer, M. Wartmann, ChemBioChem 2000, 1, 67– 70. 23For examples of Z-selective reduction of iodoalkynes with o-nitrobenzenesulfonylhydrazide (o-NBSH), see: 23aJ. Rouden, T. Seitz, L. Lemoucheux, M.-C. Lasne, J. Org. Chem. 2004, 69, 3787– 3793; 23bW. Zhu, M. Jiménez, W.-H. Jung, D. P. Camarco, R. Balachandran, A. Vogt, B. W. Day, D. P. Curran, J. Am. Chem. Soc. 2010, 132, 9175– 9187. 24 24aR. M. Borzilleri, X. Zheng, R. J. Schmidt, J. A. Johnson, S.-H. Kim, J. D. DiMarco, C. R. Fairchild, J. Z. Gougoutas, F. Y. F. Lee, B. H. Long, G. D. Vite, J. Am. Chem. Soc. 2000, 122, 8890– 8897; 24bS. J. Stachel, C. B. Lee, M. Spassova, M. D. Chappell, W. G. Bornmann, S. J. Danishefsky, T.-C. Chou, Y. Guan, J. Org. Chem. 2001, 66, 4369– 4378. Citing Literature Supporting Information Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description anie_201202694_sm_miscellaneous_information.pdf5.1 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume51, Issue27July 2, 2012Pages 6618-6621 ReferencesRelatedInformation

Referência(s)