The epidermal keratinocyte
1988; Wiley; Volume: 8; Issue: 5 Linguagem: Inglês
10.1002/bies.950080509
ISSN1521-1878
Autores Tópico(s)Cellular Mechanics and Interactions
ResumoBioEssaysVolume 8, Issue 5 p. 163-167 Feature The epidermal keratinocyte Fiona M. Watt, Fiona M. Watt Imperial Cancer Research Fund, P.O. Box 123, Lincoln's Inn Fields, London WC2A 3PX, UKSearch for more papers by this author Fiona M. Watt, Fiona M. Watt Imperial Cancer Research Fund, P.O. Box 123, Lincoln's Inn Fields, London WC2A 3PX, UKSearch for more papers by this author First published: May 1988 https://doi.org/10.1002/bies.950080509Citations: 23AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Rheinwald, J. G. & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–344. 2 Karasek, M. A. & Charlton, M. E. (1971). Growth of postembryonic skin epithelial cells on collagen gels. J. Invest. Dermatol. 56, 205–240. 3 Bell, E., Ehrlich, H. P., Buttle, D. J. & Nakatsuji, T. (1981). Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211, 1052–1054. 4 Fusenig, N. E., Breitkreutz, D., Dzarlieva, R. T., Boukamp, P., Bohnert, A. & Tilgen, W. (1983). Growth and differentiation characteristics of transformed keratinocytes from mouse and human skin in vitro and in vivo. J. Invest. Dermatol. 81, 168s–175s. 5 Prunieras, M., Regnier, M. & Woodley, D. (1983). Methods of cultivation of keratinocytes with an air-liquid interface. J. Invest. Dermatol. 81, 28s–33s. 6 Rheinwald, J. G. (1980). Serial cultivation of normal human epidermal keratinocytes. Methods Cell Biol. 21, 229–254. 7 Boyce, S. T. & Ham, R. G. (1983). Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81, 33s–40s. 8 Hennings, H., Michael, D., Cheng, C., Steinert, P., Holbrook, K. & Yuspa, S. H. (1980). Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19, 245–254. 9 Weiss, R. A., Eichner, R. & Sun T.-T. (1984). Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-k Dalton keratin as molecular markers for hyperproliferative keratinocytes. J. Cell. Biol. 98, 1397–1406. 10 Fuchs, E. & Green, H. (1981). Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25, 617–625. 11 Fleckman, P., Dale, B. A. & Holbrook, K. A. (1985). Profilaggrin, a high molecular weight precursor of filaggrin in human epidermis and cultured keratinocytes. J. Invest. Dermatol. 85, 507–512. 12 Rice, R. H. & Green, H. (1979). Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell 18, 681–694. 13 Simon, M. & Green, H. (1984). Participation of membrane-associated proteins in the formation of the cross-linked envelope of the keratinocyte. Cell 36, 827–834. 14 Watt, F. M., Boukamp, P. Hornung, J. & Fusenig, N. E. (1987). Effect of growth environment on spatial expression of involucrin by human epidermal keratinocytes. Arch. Dermatol. Res. 279, 335–340. 15 Thacher, S. M. & Rice, R. H. (1985). Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell 40, 685–695. 16 Watt, F. M. (1983). Involucrin and other markers of keratinocyte terminal differentiation. J. Invest. Dermatol. 81, 100s–103s. 17 Briggaman, R. A. (1982). Biochemical composition of the epidermal–dermal junction and other basement membrane. J. Invest. Dermatol. 78, 1–6. 18 Bohnert, A., Hornung, J., Mackenzie, I. C. & Fusenig, N. E. (1986). Epithelial–mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes. Cell. Tiss. Res. 244, 413–429. 19 Potten, C. S. (1981). Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int. Rev. Cytol. 69, 271–318. 20 Potten, C. S., Wichmann, H. E., Loeffler, M., Dobek, K. & Major, D. (1982). Evidence for discrete cell kinetic subpopulations in mouse epidermis based on mathematical analysis. Cell Tiss. Kinet. 15, 305–320. 21 Dover, R. & Potten, C. S. (1983). Cell cycle kinetics of cultured human epidermal keratinocytes. J. Invest. Dermatol 80, 4423–4429. 22 Albers, K. M., Setzer, R. W. & Taichman, L. B. (1986). Heterogeneity in the replicating population of cultured human epidermal keratinocytes. Differentiation 31, 134–140. 23 Barrandon, Y. & Green, H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. USA 84, 2302–2306. 24 Allen-Hoffmann, B. L. & Rheinwald, J. G. (1984). Polycyclic aromatic hydrocarbon mutagenesis of human epidermal keratinocytes in culture. Proc. Natl. Acad. Sci. USA 81, 7802–7806. 25 Rheinwald, J. G. & Green, H. (1977). Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature (Lond.) 265, 421–424. 26 Barrandon, Y. & Green, H. (1987). Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor α and epidermal growth factor. Cell 50, 1131–1137. 27 Coffey JR., R. J., Derynck, R., Willcox, J. N., Bringman, T. S., Gouston, A. S., Moses, H. L. & Pittelkow, M. R. (1987). Production and auto-induction of transforming growth factor α in human keratinocytes Nature (Lond.) 325, 817–820. 28 Nanney, L. B., Magid, M., Stoschek, C. M. & King JR., L. E. (1984). Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages. J. Invest. Dermatol. 83, 385–393. 29 Green, M. R. & Couchman, J. R. (1985). Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition. J. Invest. Dermatol. 85, 238–245. 30 Taylor, A., Hogan, B. L. M., & Watt, F. M. (1985). Biosynthesis of EGF receptor, transferrin receptor and colligin by cultured human keratinocytes and the effects of retinoic acid. Expl. Cell Res. 159, 47–54. 31 Shipley, G. D., Pittelkow, M. R., Wille JR., J. J., Scott, R. E. & Moses H. L. (1986). Reversible inhibition of normal human prokeratinocyte proliferation by type β transforming growth factor – growth inhibitor in serum-free medium. Cancer Res. 46, 2068–2071. 32 Elgjo, K. & Reichelt, K. L. (1984). Purification and characterisation of a mitosis inhibiting epidermal peptide. Cell Biol. Int. Rep. 8, 379–382. 33 Elgjo, K., Reichelt, K. L., Hennings, H., Michael, D. & Yuspa, S. H. (1986). Purified epidermal pentapeptide inhibits proliferation and enhances terminal differentiation in cultured mouse epidermal cells. J. Invest. Dermatol. 87, 555–558. 34 Albers, K. M., Greif, F., Setzer, R. W. & Taichman, L. B. (1987). Cell-cycle withdrawal in cultured keratinocytes. Differentiation 34, 236–240. 35 Dover R. & Watt, F. M. (1987). Measurement of the rate of epidermal terminal differentiation: expression of involucrin by S phase keratinocytes in culture and in psoriatic plaques. J. Invest. Dermatol. 89, 349–352. 36 Regnier, M., Vaigot, P., Darmon, M. & Prunieras, M. (1986). Onset of epidermal differentiation in rapidly proliferating basal keratinocytes. J. Invest. Dermatol. 87, 472–476. 37 Rheinwald, J. G. (1979). The role of terminal differentiation in the finite culture lifetime of the human epidermal keratinocyte. Int. Rev. Cytol. Suppl. 10, 25–33. 38 Rice, R. H. & Green, H. (1978). Relation of protein synthesis and transglutaminase activity to formation of the cross linked envelope during terminal differentiation of the cultured human epidermal keratinocyte. J. Cell. Biol. 76, 705–711. 39 Kam, E., Watt, F. M. & Pitts, J. D. (1987). Patterns of junctions communication in skin: studies on cultured keratinocytes. Expl. Cell. Res, 173, 431–438. 40 Watt, F. M. & Green, H. (1981). Involucrin synthesis is correlated with cell size in human epidermal cultures. J. Cell. Biol. 90, 738–742. 41 Barrandon, Y. & Green, H. (1985). Cell size as a determinant of the clone forming ability of human keratinocytes. Proc. Natl. Acad. Sci. USA. 82, 5390–5394. 42 Leblond, C. P., Greulich, R. C. & Pereira, J. P. M. (1964). Relationship of cell formation and cell migration in the renewal of stratified squamous epithelia. Adv. Biol. Skin. 5, 39–67. 43 Etoh, H., Taguchi, Y. H., Tabachnick, J. (1974). Movement of beta-irradiated epidermal basal cells to the spinous-granular layers in the absence of cell division. J. Invest. Dermatol. 64, 431–435. 44 Iversen, O. H., Bjerknes, R. & Devik, F. (1968). Kinetics of cell renewal, cell migration and cell loss in the hairless mouse dorsal epidermis. Cell Tiss. Kinet. 1, 351–367. 45 Watt, F. M. & Green, H. (1982). Stratification and terminal differentiation of cultured epidermal cells. Nature (Lond) 295, 434–436. 46 Watt, F. M. (1984). Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis. J. Cell. Biol. 98, 16–21. 47 Magee, A. I., Lytton, N. A. & Watt, F. M. (1987). Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes. Expl. Cell. Res. 172, 43–53. 48 Watt, F. M. (1987). Influence of cell shape and adhesiveness on stratification and terminal differentiation of human keratinocytes in culture. J. Cell. Sci. suppl. (in press). 49 Odland, G. & Ross, R. (1968). Human wound repair. I. Epidermal regeneration. J. Cell. Biol. 39, 135–151. 50 Ross, R., Raines, E. W. & Bowen-Pope, D. F. (1986). The biology of platelet-derived growth factor. Cell 46, 155–169. 51 Albers, K. & Fuchs, E. (1987). The expression of mutant epidermal keratin cDNAs transfected in simple epithelial and squamous cell carcinoma lines. J. Cell. Biol. 105, 791–806. 52 Watt, F. M., Mattey, D. L. & Garrod, D. R. (1984). Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J. Cell. Biol. 99, 2211–2215. 53 O'Keefe, E. J., Briggaman, R. A. & Herman, B. (1987). Calcium-induced assembly of adherens junctions in keratinocytes. J. Cell. Biol. 105, 807–817. 54 Green, K. J., Geiger, B., Jones, J. C. R., Talian, J. C. & Goldman, R. D. (1987). The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes. J. Cell. Biol. 104, 1389–1402. 55 Rheinwald, J. G. & Beckett, M. A. (1980). Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes. Cell 22, 629–632. 56 Rhim, J. S., Jay, G., Arnstein, P., Price, F. M. Sanford, K. K. & Aaronson, S. A. (1985). Neoplastic transformation of human epidermal keratinocytes by AD12-SV40 and Kirsten sarcoma viruses. Science 227, 1250–1252. 57 Rhim, J. S., Rijita, J., Arnstein, P. & Aaronson, S. A. (1986). Neoplastic conversion of human keratinocytes by adenovirus 12-SV40 virus and chemical carcinogens. Science 232, 385–388. 58 Pirisi, L., Yasumoto, S., Feller, M., Doniger, J. & Dipaolo, J. A. (1987). Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J. Virol. 61, 1061–1066. 59 Parkinson, E. K. (1985). Defective responses of transformed keratinocytes to terminal differentiation stimuli. Their role in epidermal tumour promotion by phorbol esters and by deep skin wounding. Br. J. Cancer. 52, 479–493. 60 Weissman, B. E. & Aaronson, S. A. (1983). BALB and Kirsten murine sarcoma viruses alter growth and differentiation of EGF-dependent BALB/c mouse epidermal keratinocyte lines. Cell 3, 599–606. 61 Weissman, B. & Aaronson, S. A. (1985). Members of the src and ras oncogene families supplant the epidermal growth factor requirement of BALB/MK-2 keratinocytes and induce distinct alterations in their terminal differentiation progress. Mol. Cell. Biol. 5, 3386–3396. 62 Balmain, A., Ramsden, M., Bowden, G. T. & Smith, J. (1984). Activation of the mouse cellular Harvey–ray gene in chemically induced benign skin papillomas. Nature 307, 658–660. 63 Yuspa, S. K., Kilkenny, A. F., Stanley, J. & Lichti, U. (1985). Keratinocytes blocked in phorbol ester-responsive early stage of terminal differentiation by sarcoma viruses. Nature (Lond.) 314, 459–462. 64 Peehl, D. M. & Stanbridge, E. J. (1982). The role of differentiation in the suppression of tumorigenicity in human cell hybrids. Int. J. Cancer. 30, 113–120. 65 Harris, H. & Bramwell, M. E. (1987). The suppression of malignancy by terminal differentiation: evidence from hybrids between tumour cells and keratinocytes. J. Cell. Sci. 87, 383–388. 66 Gallico III, G. G., O'Connor, N. E., Compton, C. C., Kehinde, O. & Green, H. (1984). Permanent coverage of large skin wounds with autologous cultured human epithelium. New Engl. J. Med. 311, 448–451. 67 Phillips, T., Leigh, I. H., Hackett, M., Brain, A., Purkis, P. & Navsaria, H. (1986). Allografts of cultured keratinocytes in clinical practice. Br. J. Dermatol. 115, 21–22. 68 Morgan, J. R., Barrandon, Y., Green, H. & Mulligan, R. (1987). Expression of exogenous growth hormone gene by transplantable human epidermal cells. Science 237, 1476–1479. Citing Literature Volume8, Issue5May 1988Pages 163-167 ReferencesRelatedInformation
Referência(s)