Editorial Revisado por pares

Progress of Rotary Blood Pumps: Presidential Address, International Society for Rotary Blood Pumps 2006, Leuven, Belgium

2007; Wiley; Volume: 31; Issue: 5 Linguagem: Inglês

10.1111/j.1525-1594.2007.00390.x

ISSN

1525-1594

Autores

Setsuo Takatani,

Tópico(s)

Fuel Cells and Related Materials

Resumo

Artificial OrgansVolume 31, Issue 5 p. 329-344 Progress of Rotary Blood Pumps: Presidential Address, International Society for Rotary Blood Pumps 2006, Leuven, Belgium Setsuo Takatani PhD, DrMed, Setsuo Takatani PhD, DrMed Tokyo Medical and Dental UniversityDepartment of Artificial Organs2-3-10 Surugadai, Kanda, Chiyoda-kuTokyo 101-0062, JapanE-mail: [email protected]Search for more papers by this author Setsuo Takatani PhD, DrMed, Setsuo Takatani PhD, DrMed Tokyo Medical and Dental UniversityDepartment of Artificial Organs2-3-10 Surugadai, Kanda, Chiyoda-kuTokyo 101-0062, JapanE-mail: [email protected]Search for more papers by this author First published: 26 April 2007 https://doi.org/10.1111/j.1525-1594.2007.00390.xCitations: 10Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Bernstein EF, Castaneda AR, Blackshear PL, Varco RL. Prolonged mechanical circulatory support: an analysis of certain basic physical and physiological considerations. Surgery 1965; 57: 103. 2 Blackshear PL, Dorman F, Steinbach JH. Some mechanical effects that influence hemolysis. Trans ASAIO 1965; 11: 112. 3 Blackshear PL, Dorman FD, Steinbach JH, Maybach EJ, Singh A. Wall interaction and hemolysis. Trans ASAIO 1966; 12: 113. 4 Dorman F, Bernstein EF, Sovilj R, Blackshear PL. Progress in the design of a centrifugal assist pump, with transcutaneous energy transmission by magnetic coupling. Trans ASAIO 1969; 15: 441. 5 Bernstein EF, Dorman FD, Blackshear PL, Scott DR. A compact, efficient centrifugal blood pump. Surgery 1970; 68: 105. 6 Bernstein EF, Cosentino LC, Reich S, et al. A compact, low hemolysis, non-thrombogenic system for non-thoracotomy prolonged left ventricular bypass. Trans ASAIO 1974; 20: 643–54. 7 Golding LR, Harasaki H, Loop FD, Sukalac R, Reich S, Nosé Y. Use of a centrifugal pump for temporary left ventricular assist system. Trans ASAIO 1978; 24: 93–7. 8 Golding LR, Grooves LK, Peter M, et al. Initial clinical experience with a new temporary left ventricular assist device. Ann Thorac Surg 1980; 29: 66–9. 9 Golding LR, Jacobs G, Murakami T, et al. Chronic nonpulsatile blood flow in an alive, awake animal 34-day survival. Trans ASAIO 1980; 26: 251–5. 10 Valdes F, Takatani S, Jacobs G, et al. Comparison of hemodynamic changes in a chronic nonpulsatile biventricular bypass (BVB) and total artificial heart (TAH). Trans ASAIO 1980; 26: 455–60. 11 Valdes F, Golding LR, Harasaki H, Takatani S, Jacobs G, Nosé Y. Hemodynamic response to exercise during chronic ventricular fibrillation and nonpulsatile biventricular bypass (BVB). Trans ASAIO 1981; 27: 449–53. 12 Golding LR, Murakami G, Harasaki H, et al. Chronic nonpulsatile blood flow. Trans ASAIO 1982; 28: 81–5. 13 Yada I, Golding LR, Harasaki H, et al. Physiological studies of nonpulsatile blood flow in chronic models. Trans ASAIO 1983; 29: 520–5. 14 Losert U, Clogar D, Mayr H, et al. Regional myocardial blood flow during nonpulsatile left ventricular bypass in calves. Trans ASAIO 1982; 28: 86–92. 15 Schistek R, Genelin A, Hager J, et al. Total implantable axial nonpulsatile blood pump for left ventricular assist and total artificial heart replacement. Trans ASAIO 1982; 28: 589–93. 16 Unger F, Schistek R, Hager J, et al. Orthotopic heart replacement by nonpulsatile axial blood pumps. Artif Organs 1985; 9: 65–8. 17 Hager J, Brandstaetter F, Klima G, Koller J, Baum M, Unger F. Functional heart replacement with the spindle pump: first results. ASAIO Trans 1990; 36: M379–82. 18 Baurmeister U, Reul H, Berger E. The tea-spoon: a new centrifugal blood pump. ASAIO Trans 1982; 1: 1. 19 Affeld K, Ganter D. Investigation of the flow in a nutating centrifugal blood pump. ESAO Proc 1984; 1: 294–6. 20 Affeld K, Poppe R, Yoganathan A. Investigation of the flow in a centrifugal blood pump. ASAIO Trans 1986; 1: 269–73. 21 Dame D. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential. Artif Organs 1996; 20: 613–7. 22 Wampler R, Moise JC, Frazier H, Olsen DB. In vivo evaluation of a peripheral vascular access axial flow blood pump. Trans ASAIO 1988; 34: 450–4. 23 Frazier OH, Wampler R, Duncan JM, et al. First human use of the Hemopump, a catheter mounted ventricular assist device. Ann Thorac Surg 1990; 49: 299–304. 24 Siess T, Reul H, Rau G. Concept, realization and first in vitro testing of an intraarterial microaxial blood pump. Artif Organs 1995; 19: 644–52. 25 Affeld K, Schichl K, Yoganathan A. ESAO Workshop Nonpulsatile Blood Pumps; 1985 Jan; Axams, Tyrol, Austria. 26 Takatani S, Tanaka T, Noda H, Akutsu T. Development of a direct-drive centrifugal nonpulsatile blood pump. In: Y Nose, C Kjellstrand, P Inanovich, eds. Progress in Artificial Organs—1985. Cleveland, OH: ISAO Press, 1986; 373–8. 27 Thoma H, Schima H, eds. International Workshop on Rotary Blood Pumps. Vienna: University of Vienna, 1988; 124–37. 28 Schima H, Thoma H, Wieselthaler G, Wolner E, eds. International Workshop on Rotary Blood Pumps. Vienna: University of Vienna, 1991; 76. 29 Schima H, Trubel W, Wieselthaler G, et al. The Vienna implantable centrifugal blood pump. Artif Organs 1994; 18: 500–5. 30 Monties JR, Havlik P, Mesana T, Trinkl J, Tourres JL, Demunck JL. Development of the Marseilles Pulsatile Rotary Blood Pump for permanent implantable left ventricular assistance. Artif Organs 1994; 18: 506–11. 31 Rosarius N, Siess T, Reul H, Rau G. Concept, realization and first in vitro testing of an intraarterial microaxial blood pump with an integrated drive unit. Artif Organs 1994; 18: 512–6. 32 Yada I, Takatani, S., eds. Non-Pulsatile Perfusion and Rotary Blood Pumps. Cleveland, OH: ICAOT Press, 1993. 33 Butler KC, Wampler RK, Griggith BP, Antaki JF, Kormos RL, Borovetz HS. Development of an implantable axial flow LVAS. Proceedings of the International Workshop on Rotary Blood Pumps. Vienna: University of Vienna, 1991;148– 53. 34 Jarvik RK. System considerations favoring rotary artificial hearts with blood-immersed bearings. Artif Organs 1995; 19: 565–70. 35 Mizuguchi K, Damm G, Benkowsky R, et al. Development of an axial flow ventricular assist device: in vitro and in vivo evaluation. Artif Organs 1995; 19: 653–9. 36 Wieselthaler GM, Schima H, Hiesmayr M, et al. First clinical experience with the DeBakey VAD continuous-axial-flow pump for bridge to transplantation. Circulation 2000; 101: 356–9. 37 Westaby S, Banning AP, Jarvik R, et al. First permanent implant of Jarvik 2000 heart. Lancet 2000; 356: 900–3. 38 Griffith BP, Kormos RL, Borovetz HS, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg 2001; 71: S116–20. 39 Westaby S, Frazier OH, Banning A. Six years of continuous mechanical circulatory support. N Engl J Med 2006; 355: 325–7. 40 HoughtonP. Living with the Jarvik 2000: a five-plus year experience. Artif Organs 2005; 30: 322–3. 41 Ohara Y, Sakuma I, Mainouchi K, et al. Baylor Gyro Pump: a completely seal-less centrifugal pump aiming for long-term circulatory support. Artif Organs 1993; 17: 599–604. 42 Yamazaki K, Kihara S, Akimoto T, et al. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg 2002; 50: 461–5. 43 Yamazaki K, Saito S, Kihara S, et al. Implantable centrifugal LVAD EVAHEART: current status of Japanese clinical trial. Artif Organs 2006; 30: A48. 44 Rosarius N, Siess T, Reul H, Rau G. Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump with an integrated drive unit. Artif Organs 1994; 18: 512–6. 45 Siess T, Nix C, Menzler F. From a lab type to a product: a retrospective view on Impella's assist technology. Artif Organs 2001; 25: 414–21. 46 Martin J, Benk C, Yerebakan C, Derjung G, Sarai K, Beyersdorf F. The new “Impella” intracardiac microaxial pump for treatment of right heart failure after orthotopic heart transplantation. Transplant Proc 2001; 33: 3549–50. 47 Jurmann MJ, Siniawski H, Erb M, Drews T, Hetzer R. Initial experience with miniature axial flow ventricular assist devices for postcardiotomy heart failure. Ann Thorac Surg 2004; 77: 1642–7. 48 Imamura M, Hale S, Johnson CE, et al. The first successful DeBakey VAD child implantation as a bridge to transplant. ASAIO J 2005; 51: 670–2. 49 Westaby S, Katsumata T, Evans R, Pigott D, Taggart DP, Jarvik RK. The Jarvik 2000 Oxford system: increasing the scope of mechanical circulatory support. J Thorac Cardiovasc Surg 1997; 114: 467–74. 50 Takatani S, Hoshi H, Tajima K, et al. Feasibility of a miniature centrifugal rotary blood pump for low-flow circulation in children and infants. ASAIO J 2005; 51: 557–62. 51 Beams JW. Magnetic suspension for small rotors. Rev Sci Inst 1950; 21: 182–4. 52 Akamatsu T, Nakazeki T, Itoh H. Centrifugal blood pump with a magnetically suspended impeller. Artif Organs 1992; 16: 305–8. 53 Akamatsu T, Tsukiya T, Nishimura K, Park CH, Nakazeki T. Recent studies of the centrifugal blood with a magnetically suspended impeller. Artif Organs 1995; 19: 631–4. 54 Allaire PE, Kim HC, Maslen EH, Olsen DB, Bearnson GB. Prototype continuous flow ventricular assist device supported on magnetic bearings. Artif Organs 1996; 20: 582–90. 55 Hetzer R, Weng Y, Ptapov EV, et al. First clinical experience with a novel magnetically suspended axial flow left ventricular assist device. Eur J Cardiothorac Surg 2004; 25: 964–70. 56 Schmid C, Tjan TD, Etz C, et al. First clinical experience with the INCOR left ventricular assist device. J Heart Lung Transplant 2005; 24: 1188–94. 57 Schoeb R, Barletta N, Fleischli A, et al. A bearingless motor for a left ventricular assist device (LVAD). 7th International Symposium on Magnetic Bearings. Zurich, Switzerland, August 23–25, 2000;383– 8. 58 De Robertis F, Birks EJ, Rogers P, Dreyfus G, Pepper JR, Khaghani A. Clinical performance with the Levitronix CentriMag short-term ventricular assist device. J Heart Lung Transplant 2006; 25: 181–6. 59 Loree HM, Bourque K, Gernes DB, et al. The HeartMate III: design and in vivo studies of a maglev centrifugal left ventricular assist device. Artif Organs 2001; 25: 386–91. 60 Frazier OH, Tuzun E, Cohn W, Tamez D, Kadipasaoglu KA. Total heart replacement with dual centrifugal ventricular assist devices. ASAIO J 2005; 51: 224–9. 61 Chen C, Anataki JF, Ludlow J, Paden B, Long JW. Design optimization of the HeartQuest maglev VAD. ASAIO J 2001; 47: 135. 62 Bearnson GB, Jacobs GB, Kirk J, Khanwilkar PS, Nelson KE, LongJW. HeartQuest ventricular assist device magnetically levitated centrifugal blood pump. Artif Organs 2006; 30: 339–46. 63 Asama J, Shinshi T, Hoshi H, Takatani S, Shimokohbe A. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller. Artif Organs 2006; 30: 184–91. 64 Hoshi H, Asama H, Shinshi T, et al. Disposable magnetically levitated centrifugal blood pump: design and in vitro performance. Artif Organs 2005; 29: 520–6. 65 Hoshi H, Shinshi T, Takatani S. Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif Organs 2006; 30: 324–38. 66 Golding LR, Smith WA, Bodman DR. The Cleveland Clinic Rotodynamic pump program. Artif Ogans 1996; 20: 481–4. 67 Gazzoli F, Alloni A, Pagani F, et al. CorAide left ventricular assist system: initial experience of the cardio-thoracic surgery center in Pavia. Ann Thorac Surg 2007; 83: 279–82. 68 Esmore DS, Kaye D, Salamonsen R, et al. First clinical implant of the VentrAssist left ventricular assist system as destination therapy for end-stage heart failure. J Heart Lung Transplant 2005; 24: 1150–4. 69 Watterson PA, Woodard JC, Ramsden VS, Reizes, JA. VentrAssist hydrodynamically suspended, open, centrifugal blood pump. Artif Organs 2000; 24: 475–7. 70 Wearden PD, Morell VO, Keller BB, et al. The PediaFlow pediatric ventricular assist device. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2006; 92–8. 71 Duncan BW, Lorenz M, Kopcak MW, et al. The PediPump: a new ventricular assist device for children. Artif Organs 2005; 29: 527–30. 72 Baldwin JT, Borovetz HS, Duncan BW, et al. The National Heart, Lung, and Blood Institute Pediatric Circulatory Support Program. Circulation 2006; 113: 147–55. 73 Frazier OH, Tuzun E, Cohn WE, Conger JL, Kadipasaoglu KA. Total heart replacement using dual intracorporeal continuous-flow pumps in a chronic bovine model: a feasibility study. ASAIO J 2006; 52: 145–9. 74 Birks EJ, Tansley PD, Hardy H, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 2006; 355: 1873–84. Citing Literature Volume31, Issue5May 2007Pages 329-344 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX