Artigo Acesso aberto Revisado por pares

Urban-Area Segmentation Using Visual Words

2009; Institute of Electrical and Electronics Engineers; Volume: 6; Issue: 3 Linguagem: Inglês

10.1109/lgrs.2009.2014400

ISSN

1558-0571

Autores

Lior Weizman, Jacob Goldberger,

Tópico(s)

Image Retrieval and Classification Techniques

Resumo

In this letter, we address the problem of urban-area extraction by using a feature-free image representation concept known as ldquoVisual Words.rdquo This method is based on building a ldquodictionaryrdquo of small patches, some of which appear mainly in urban areas. The proposed algorithm is based on a new pixel-level variant of visual words and is based on three parts: building a visual dictionary, learning urban words from labeled images, and detecting urban regions in a new image. Using normalized patches makes the method more robust to changes in illumination during acquisition time. The improved performance of the method is demonstrated on real satellite images from three different sensors: LANDSAT, SPOT, and IKONOS. To assess the robustness of our method, the learning and testing procedures were carried out on different and independent images.

Referência(s)