Mechanisms of action of 6-thioguanine, 6-mercaptopurine, and 8-azaguanine.

1975; National Institutes of Health; Volume: 35; Issue: 10 Linguagem: Inglês

Autores

J. Arly Nelson, J W Carpenter, Lucy M. Rose, Doris J. Adamson,

Tópico(s)

Folate and B Vitamins Research

Resumo

The effects of 6-thioguanine on purine biosynthesis and cell viability have been examined in H.Ep. 2 cells grown in culture. Toxicity is not reversed by aminoimidazolecarboxamide, suggesting that inhibition of purine biosynthesis de novo is not the sole mechanism of toxicity. Also, 6-(methylmercapto)purine ribonucleoside, a potent inhibitor of purine biosynthesis de novo, produces more marked reductions in cellular pools of purines than does 6-thioguanine without killing cells. There is no apparent inhibition by 6-thioguanosine 5'-monophosphate of other enzymes leading to the synthesis of guanosine 5'-triphosphate as determined in whole cells by measurements of radioactive hypoxanthine or guanine incorporation. Inhibition of DNA synthesis by 1 mM thymidine protects cells from 6-mercaptopurine or 6-thioguanine but fails to protect cells from 8-azaguanine toxicity. On the other hand, inhibition of RNA synthesis by 6-azauridine plus deoxycytidine protects cells against 8-azaguanine but does not protect against 6-thioguanine or 6-mercaptopurine toxicity. In agreement with the in vitro data, arabinosylcytosine (a potent inhibitor of DNA synthesis) fails to protect mice against 8-azaguanine but has previously been shown to protect mice from 6-mercaptopurine or 6-thioguanine toxicity. The results support the hypotheses of others that incorporation into DNA (as 6-thioguanine nucleotide) is a mechanism of toxicity for these thiopurines, whereas 8-azaguanine is toxic due to its incorporation into RNA.

Referência(s)