Revisão Revisado por pares

Presynaptic Receptors a Relevance to Psychotropic Drug Action in Man

1990; Wiley; Volume: 604; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1990.tb32005.x

ISSN

1749-6632

Autores

Herbert Y. Meltzer,

Tópico(s)

Neurotransmitter Receptor Influence on Behavior

Resumo

Annals of the New York Academy of SciencesVolume 604, Issue 1 p. 353-371 Presynaptic Receptorsa Relevance to Psychotropic Drug Action in Man HERBERT Y. MELTZER, HERBERT Y. MELTZER Department of Psychiatry Case Western Reserve University School of Medicine 2040 Abingdon Road Cleveland, Ohio 44106Search for more papers by this author HERBERT Y. MELTZER, HERBERT Y. MELTZER Department of Psychiatry Case Western Reserve University School of Medicine 2040 Abingdon Road Cleveland, Ohio 44106Search for more papers by this author First published: August 1990 https://doi.org/10.1111/j.1749-6632.1990.tb32005.xCitations: 7 a Supported in part by National Institute of Mental Health grants number MH-41684, MH-41683, MH-41594, grants from the Cleveland Foundation, the Sawyer Foundation, and the Laureate Foundation/NARSAD. Dr. Meltzer is the recipient of a Research Scientist Award grant number MH-47808. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Langer, S. Z. 1977. Presynaptic receptors and their role in the regulation of transmitter release. Br. J. Pharmacol. 60: 481–497. 10.1111/j.1476-5381.1977.tb07526.x CASPubMedWeb of Science®Google Scholar 2 Starke, K. 1977. Regulation of noradrenaline release by presynaptic receptor systems. Rev. Psychol. Biochem. Pharmacol. 77: 1–124. 10.1007/BFb0050157 PubMedWeb of Science®Google Scholar 3 Lancer, S. Z. 1987. Presynaptic regulation of monoaminergic neurons. In Psychopharmacology: The Third Generation of Progress. H. Y. Meltzer, Ed.: 151–157. Raven Press. New York , N.Y . Google Scholar 4 Finberg, J. P. M. 1987. Antidepressant drugs and down-regulation of presynaptic receptors. Biochem. Pharmacol. 36: 3557–3562. 10.1016/0006-2952(87)90002-5 CASPubMedWeb of Science®Google Scholar 5 Siever, L. 1987. Role of noradrenergic mechanisms in the etiology of the affective disorder. In Psychopharmacology: The Third Generation of Progress. H. Y. Meltzer, Ed.: 493–504. Raven Press. New York , N.Y . Google Scholar 6 Nutt, D. J. & S. G. Molyneux. 1986. The effect of clonidine on plasma MHPG: evidence against tonic alpha2-adrenoceptor control of noradrenergic function. Psychopharmacology 90: 509–512. 10.1007/BF00174070 CASPubMedWeb of Science®Google Scholar 7 Kalsner, S. 1985. Is there feedback regulation of neurotransmitter release by autoreceptors Biochem. Pharmacol. 34: 4085–4097. 10.1016/0006-2952(85)90199-6 CASPubMedWeb of Science®Google Scholar 8 Huang, Y. H., J. W. Maas & G. H. Hu. 1980. The time course of noradrenergic pre- and post-synaptic activity during chronic desipramine treatment. Eur. J. Pharmacol. 68: 41–47. 10.1016/0014-2999(80)90058-8 CASPubMedWeb of Science®Google Scholar 9 Racagni, G., I. Mocchetti, G. Calderini, A. Battistella & N. Brunello. 1983. Temporal sequence of changes in central noradrenergic system of rat after prolonged antidepressant treatment: receptor desensitization and neurotransmitter interactions. Neuropharmacology 22: 415–424. 10.1016/0028-3908(83)90191-0 CASPubMedWeb of Science®Google Scholar 10 Lerner, P., L. F. Major, D. L. Murphy, S. Lipper, C. R. Lake & W. Lovenberg. 1979. Dopamine-β-hydroxylase and norepinephrine in human cerebrospinal fluid: effects of monoamine oxidase inhibitors. Neuropharmacology 18: 423–426. 10.1016/0028-3908(79)90152-7 CASPubMedWeb of Science®Google Scholar 11 Pilc, A. & S. J. Enna. 1986. Antidepressant administration has a differential effect on rat brain alpha2-adrenoceptor sensitivity to agonists and antagonists. Eur. J. Pharmacol. 132: 277–282. 10.1016/0014-2999(86)90616-3 CASPubMedWeb of Science®Google Scholar 12 Cohen, R. M., I. C. Campbell, M. R. Cohen, T. Torda, D. Pickar, L. J. Siever & D. L. Murphy. 1980. Presynaptic noradrenergic regulation during depression and antidepressant drug treatment. Psychiatry Res. 3: 93–105. 10.1016/0165-1781(80)90051-7 CASPubMedWeb of Science®Google Scholar 13 Crews, F. T. & C. B. Smith. 1978. Presynaptic alpha-receptor subsensitivity after long-term antidepressant treatment. Science 202: 322–324. 10.1126/science.211589 CASPubMedWeb of Science®Google Scholar 14 Svensson, T. H. & T. Usdin. 1978. Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: alpha-receptor mediation. Science 202: 1089–1091. 10.1126/science.213833 CASPubMedWeb of Science®Google Scholar 15 Scuvee-Moreau, J. J. & T. H. Svensson. 1982. Sensitivity in vivo of central alpha2-and opiate receptors after chronic treatment with various antidepressants. J. Neural Transm. 54: 51–63. 10.1007/BF01249278 CASPubMedWeb of Science®Google Scholar 16 Schoffelmeer, A. N. M. & A. H. Mulder. 1982. [3H] Noradrenaline and [3H] 5-HT release from rat brain slices and its presynaptic alpha-adrenergic modulation after long-term DMI treatment. Naunyn Schmiedebergs Arch. Pharmacol. 318: 173–180. 10.1007/BF00500477 CASPubMedWeb of Science®Google Scholar 17 Campbell, I. C. & R. M. McKernan. 1982. Central and peripheral changes in alpha-adrenoceptors in response to chronic antidepressant drug administration. Adv. Biosci. 40: 153–160. CASGoogle Scholar 18 Schoffelmeer, A. N. M., M. D. Hoorneman, P. Sminia & A. H. Mulder. 1984. Presynaptic alpha2- and post-synaptic beta-adrenoceptor sensitivity in slices of rat neocortex after chronic treatment with various antidepressant drugs. Neuropharmacology 23: 115–119. 10.1016/S0028-3908(84)80002-7 CASPubMedWeb of Science®Google Scholar 19 Asakura, M., T. Tsukamoto & K. Hasegawa. 1982. Modulation of rat brain alpha2 and beta-adrenergic receptor sensitivity following long term treatment with antidepressants. Brain Res. 235: 192–197. 10.1016/0006-8993(82)90212-8 CASPubMedWeb of Science®Google Scholar 20 Smith, C. B., J. A. Garcia-Sevilla & P. J. Hollingsworth. 1981. Alpha-adrenoceptors in rat brain are decreased after long term tricyclic antidepressant treatment. Brain Res. 210: 413–418. 10.1016/0006-8993(81)90919-7 CASPubMedWeb of Science®Google Scholar 21 Campbell, I. C. & R. M. McKernan. 1986. Clorgyline and desipramine alter the sensitivity of [3H] noradrenaline release to calcium but not to clonidine. Brain Res. 312: 253–259. 10.1016/0006-8993(86)91132-7 Web of Science®Google Scholar 22 Sugrue, M. F. 1982. A study of the sensitivity of rat brain alpha2-adrenoceptors during chronic antidepressant treatments. Naunyn Schmiedebergs Arch. Pharmacol. 320: 90–96. 10.1007/BF00506306 CASPubMedWeb of Science®Google Scholar 23 Peroutka, S. J. & S. H. Snyder. 1980. Regulation of serotonin, (5-HT2) receptors labeled with [3H] spiroperidol by chronic treatment with the antidepressant amitriptyline. J. Pharmacol. Exp. Ther. 215: 582–587. CASPubMedWeb of Science®Google Scholar 24 Johnson, R. W., T. Reisine, S. Spotnitz, N. Wiech, R. Ursillo & H. I. Yamamura. 1980. Effect of desipramine and yohimbine on alpha- and beta-adrenoceptor sensitivity. Eur. J. Pharmacol 67: 123–127. 10.1016/0014-2999(80)90019-9 CASPubMedGoogle Scholar 25 Scott, J. A. & F. T. Crews. 1983. Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. J. Pharmacol. Exp. Ther. 224: 640–646. CASPubMedGoogle Scholar 26 Schmauss, M., G. Laakmann & D. Dieterle. 1988. Effects of alpha2-receptor blockade in addition to tricyclic antidepressants in therapy resistant depression. J. Clin. Psycho-pharmacol. 8: 108–111. 10.1097/00004714-198804000-00004 CASPubMedWeb of Science®Google Scholar 27 Siever, L. J. & T. W. Uhde. 1984. New studies and perspectives on the noradrenergic receptor system in depression: effects of the alpha2-adrenergic agonist clonidine. Biol. Psychiatry 19: 131–156. CASPubMedWeb of Science®Google Scholar 28 Roy, A., S. Guthrie, D. Picka & M. Linnoila. 1987. Plasma norepinephrine responses to cold challenge in depressed patients and normal controls. Psychiatry Res. 21: 161–168. 10.1016/0165-1781(87)90073-4 CASPubMedWeb of Science®Google Scholar 29 Maas, J. W., S. H. Koslow, J. Davis, M. Katz, A. Frazer, C. L. Bowden, N. Berman, R. Gibbons, P. Stokes & H. Landis. 1987. Catecholamine metabolism and disposition in healthy and depressed subjects. Arch. Gen. Psychiatry 44: 337–344. 10.1001/archpsyc.1987.01800160041007 CASPubMedWeb of Science®Google Scholar 30 Potter, W. Z., M. Scheinen, R. N. Golden, M. V. Reidorfer, R. Y. Cowdry, H. M. Calil, R. J. Ross & M. Linnoila. 1985. Selective antidepressants and cerebrospinal fluid. Arch. Gen. Psychiatry 42: 1171–1177. 10.1001/archpsyc.1985.01790350045009 CASPubMedWeb of Science®Google Scholar 31 Bertilsson, L., J. R. Tuck & B. Suvers. 1980. Biochemical effects of zimelidine in man. Eur. J. Clin. Pharmacol. 18: 483–487. 10.1007/BF00874660 CASPubMedWeb of Science®Google Scholar 32 Bowden, C. L., S. H. Koslow, I. Hanin, J. W. Maas, J. M. Davis & E. Robins. 1985. Effects of amitriptyline and imiparmine on brain amine neurotransmitter metabolites in cerebrospinal fluid. Clin. Pharmacol. Ther. 37: 316–324. 10.1038/clpt.1985.46 CASPubMedWeb of Science®Google Scholar 33 Hsiao, J. K., H. Agren, J. J. Bartko, M. V. Rudorfer, M. Linnoila & W. Z. Potter. 1987. Monoamine neurotransmitter interactions and the predictor of antidepressant response. Arch. Gen. Psychiatry 44: 1078–1083. 10.1001/archpsyc.1987.01800240054008 CASPubMedWeb of Science®Google Scholar 34 Siever, L. J. & K. L. Davis. 1985. Overview: toward a dysregulation hypothesis of depression. Am. J. Psychiatry 142: 1017–1031. 10.1176/ajp.142.9.1017 PubMedWeb of Science®Google Scholar 35 Ellison, D. W. & I. C. Campbell. 1986. Studies on the role of alpha2-adrenoceptors in the control of synaptosomal [3H]5-hydroxytryptamine release: effects of antidepressant drugs. J. Neurochem. 46: 218–223. 10.1111/j.1471-4159.1986.tb12949.x CASPubMedWeb of Science®Google Scholar 36 Cerrito, F. & M. Raiteri. 1979. Serotonin release is modulated by presynaptic autoreceptors. Eur. J. Pharmacol. 57: 427–430. 10.1016/0014-2999(79)90506-5 CASPubMedWeb of Science®Google Scholar 37 Gothert, M. & G. Weinheimer. 1979. Extracellular 5-hydroxytryptamine inhibits 5-hydroxytryptamine release from rat brain cortex slices. Naunyn Schmiedebergs Arch. Pharmacol. 310: 93–96. 10.1007/BF00499879 PubMedWeb of Science®Google Scholar 38 DeMontigny, C., P. Blier & Y. Chaput. 1984. Electrophysiologically-identified scrotonin receptors in the rat CNS. Effect of antidepressant treatment. Neuropharmacology 23: 1511–1520. 10.1016/0028-3908(84)90095-9 CASPubMedWeb of Science®Google Scholar 39 Blier, P., C. Demontigny & Y. Chaput. 1988. Electrophysiological assessment of the effects of antidepressant treatments on the efficacy of 5-HT neurotransmission. Clin. Neuropharmacol. 11(Suppl.2): S1–S10. CASPubMedWeb of Science®Google Scholar 40 DeMontigny, C., P. Blier, G. Caillé & E. Kovassi. 1981. Pre- and post-synaptic effects of zimelidine and norzimelidine on the serotonergic system: single cell studies in the rat. Acta Psychiatr. Scand. 63: 79–90. 10.1111/j.1600-0447.1981.tb00711.x Web of Science®Google Scholar 41 Blier, P. & C. DeMontigny. 1983. Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neurotransmission in the rat. J. Neurosci. 3: 1270–1278. 10.1523/JNEUROSCI.03-06-01270.1983 CASPubMedWeb of Science®Google Scholar 42 Blier, P., C. DeMontigny & D. Tardif. 1984. Effects of the two antidepressant drugs mianserin and indalpine on the serotonergic system: single-cell study in the rat. Psychopharmacology 84: 242–249. 10.1007/BF00427453 CASPubMedWeb of Science®Google Scholar 43 Chaput, Y., P. Blier & C. DeMontigny. 1986. In vivo electrophysiological evidence for the regulatory role of autoreceptors on serotonergic terminals. J. Neurosci. 6: 2796–2801. CASPubMedWeb of Science®Google Scholar 44 Blier, P., Y. Chaput & C. DeMontigny. 1988. Long-term 5-HT reuptake blockade but not MAO inhibition, decreases the function of terminal 5-HT autoreceptors: an electrophysiological study in the rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 337: 246–254. 10.1007/BF00168834 CASPubMedWeb of Science®Google Scholar 45 Galzin, A. M., C. Moret, B. Verzier & S. Z. Langer. 1985. Interaction between tricyclic and nontricyclic 5-hydroxytryptamine uptake inhibitors and the presynaptic 5-hydroxytryptamine inhibitory autoreceptors in the rat hypothalamus. J. Pharmacol. Exp. Ther. 235: 200–211. CASPubMedWeb of Science®Google Scholar 46 Moret, C. & M. Briley. 1988. Sensitivity of the response of 5-HT autoreceptors to drugs modifying synaptic availability of 5-HT. Neuropharmacology 27: 43–49. 10.1016/0028-3908(88)90199-2 CASPubMedWeb of Science®Google Scholar 47 Raiteri, M., G. Bonanno, M. Marchi, & G. Maura. 1984. Is there a functional linkage between neurotransmitter uptake mechanisms and presynaptic receptors J. Pharmacol. Exp. Ther. 231: 671–677. CASPubMedWeb of Science®Google Scholar 48 Feuerstein, T. J., A. Lupp & G. Hertting. 1987. The serotonin (5-HT) autoreccptor in the hippocampus of the rabbit: role of 5-HT biophase concentration. Neuropharmacology 26: 1071–1080. 10.1016/0028-3908(87)90250-4 CASPubMedWeb of Science®Google Scholar 49 Blier, P. & C. DeMontigny. 1980. Effect of chronic tricyclic antidepressant treatment on the serotonergic autoreceptor. A microiontophoric study in the rat. Naunyn Schmiede-bergs Arch. Pharmacol. 314: 123–128. 10.1007/BF00504527 CASPubMedWeb of Science®Google Scholar 50 Schickter, E., F. Brandt, K. Classen, & M. Gothert. 1985. Serotonin release in human cerebral cortex and its modulations via serotonin receptors. Brain Res. 331: 337–341. 10.1016/0006-8993(85)91559-8 PubMedWeb of Science®Google Scholar 51 Waeber, C., P. Schoeffter, J. M. Palacios & D. Hoye. 1988. Molecular pharmacology of 5-HT1D recognition sites: radioligand binding studies in human, pig, and calf brain membranes. Naunyn Schmiedebergs Arch. Pharmacol. 337: 595–601. 10.1007/BF00175783 CASPubMedWeb of Science®Google Scholar 52 Aberg-Wistedt, A. 1982. A double-blind study of zimelidine, a serotonin uptake inhibitor, and desipramine, a nonradrenaline uptake inhibitor, in endogenous depression. Acta Psychiatr. Scand. 66: 50–65. 10.1111/j.1600-0447.1982.tb00914.x CASPubMedWeb of Science®Google Scholar 53 Lader, M. 1988. Fluoxetine efficacy vs comparative drugs: an overview. Br. J. Psychiatry 153(Suppl. 3): 51–58. Web of Science®Google Scholar 54 Levine, R., J. S. Hoffman, E. D. Knepple & M. Kenin. 1989. Long-term fluoxetine treatment of a large number of obsessive-compulsive patients. J. Clin. Psychopharmacol. 9: 281–283. 10.1097/00004714-198908000-00008 CASPubMedWeb of Science®Google Scholar 55 Meltzer, H. Y., M. Lowy, A. Robertson, P. Goodnick & R. Perline. 1984. Effect of 5-hydroxytryptophan on serum cortisol levels in major affective disorders. III. Effect of antidepressants and lithium. Arch. Gen. Psychiatry 41: 391–402. 10.1001/archpsyc.1984.01790150081011 CASPubMedWeb of Science®Google Scholar 56 Aberg-Wistedt, A., M. Alvariza, L. Bertilsson, R. Malmgren & H. Wachmeister. 1985. Alaproclate, a novel antidepressant? A biochemical and clinical comparison and zimelidine. Acta Psychiatry. Scand. 71: 256–268. 10.1111/j.1600-0447.1985.tb01282.x CASPubMedWeb of Science®Google Scholar 57 Bjerkenstedt, L., G. Edman, L. Flyckt, L. Hagenfeldt, G. Sedvall & F. A. Wiesel. 1985. Clinical and biochemical effects of citalopram, a selective 5-HT reuptake inhibitor–a dose-response study in depressed patients. Psychopharmacology 87: 253–259. 10.1007/BF00432703 CASPubMedWeb of Science®Google Scholar 58 Bowden, C. L., S. H. Koslow, I. Hanin, J. W. Maas, J. M. Davis & E. Robins. 1985. Effect of amitriptyline and imipramine on brain amine neurotransmitter metabolites in cerebrospinal fluid. Clin. Pharmacol. Ther. 37: 316–324. 10.1038/clpt.1985.46 CASPubMedWeb of Science®Google Scholar 59 Blier, P. & C. DeMontigny. 1985. Short-term lithium administration enhances serotonergic neurotransmission: electrophysiological evidence in the rat CNS. Eur. J. Pharmacol. 113: 69–77. 10.1016/0014-2999(85)90344-9 CASPubMedWeb of Science®Google Scholar 60 Hotta, I. & S. Yamawaki. 1988. Possible involvement of presynaptic 5-HT autoreceptors in effect of lithium on 5-HT release in hippocampus of rat. Neuropharmacology 27: 987–992. 10.1016/0028-3908(88)90057-3 CASPubMedWeb of Science®Google Scholar 61 Wang, H-Y. & E. Friedman. 1988. Chronic lithium: desensitization of autoreceptors mediating serotonin release. Psychopharmacology 94: 312–314. 10.1007/BF00174681 CASPubMedWeb of Science®Google Scholar 62 Chiodo, L. A. & S. M. Antleman. 1980. Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature 287: 451–454. 10.1038/287451a0 CASPubMedWeb of Science®Google Scholar 63 Serra, G., A. Argiolas, V. Klimek, F. Fadda & G. L. Gessa. 1979. Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sci. 25: 415–424. 10.1016/0024-3205(79)90573-3 CASPubMedWeb of Science®Google Scholar 64 Koide, T. & H. Matsushita. 1981. An enhanced sensitivity of muscarinic cholinergic receptors associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment. Life Sci. 28: 1139–1145. 10.1016/0024-3205(81)90691-3 CASPubMedWeb of Science®Google Scholar 65 Scavone, C., M. L. Aizenstein, R. DeLucia & P. C. DaSilva. 1986. Chronic imipramine administration reduces apomorphine inhibitory effects. Eur. J. Pharmacol. 132: 263–267. 10.1016/0014-2999(86)90614-X CASPubMedWeb of Science®Google Scholar 66 Jimerson, D. C. 1987. Role of dopamine in affective disorders. In Psychopharmacology: the Third Generation of Progress. H. Y. Meltzer, Ed.: 505–512. Raven Press. New York , NY. Google Scholar 67 Holcomb, H. H., M. J. Bannon & R. H. Roth. 1982. Striatal dopamine receptors uninfluenced by chronic administration of antidepressants. Eur. J. Pharmacol. 82: 173–178. 10.1016/0014-2999(82)90507-6 CASPubMedWeb of Science®Google Scholar 68 Muscat, R., A. Towell & P. Willner. 1988. Changes in dopamine autoreceptor sensitivity in an animal model of depression. Psychopharmacology 94: 545–550. 10.1007/BF00212853 CASPubMedWeb of Science®Google Scholar 69 Macneil, D. A. & M. Gower. 1982. Do antidepressants induce dopamine autoreceptor subsensitivity Nature 298: 302–304. 10.1038/298302a0 Web of Science®Google Scholar 70 Spyraki, C. & H. Fibiger. 1985. Behavioral evidence for supersensitivity of post-synaptic dopamine receptors in the mesolimbic system after chronic administration of dopamine. Eur. J. Pharmacol. 74: 195–206. 10.1016/0014-2999(81)90531-8 Web of Science®Google Scholar 71 Smialowski, A. & J. Maj. 1985. Repeated treatment with imipramine potentiates the locomotor effect of apomorphine administered into the hippocampus in rats. Psychopharmacology 86: 468–471. 10.1007/BF00427910 CASPubMedWeb of Science®Google Scholar 72 Risby, E. D., J. K. Hsiao, T. Sunderland, H. Agren, M. V. Rudorfer & W. V. Potter. 1987. The effects of antidepressants on the cerebrospinal fluid homovanillac acid/5-hydroxyindoleacetic acid ratio. Clin. Pharmacol. Ther. 42: 547–554. 10.1038/clpt.1987.195 CASPubMedWeb of Science®Google Scholar 73 Meltzer, H. Y. & S. M. Stahl. 1976. The dopamine hypothesis of schizophrenia. Schizophr. Bull. 2: 19–76. 10.1093/schbul/2.1.19 PubMedWeb of Science®Google Scholar 74 Choido, L. A. & B. S. Bunney. 1983. Typical and atypical neuroleptics: differential effects of chronic administration of the activity of A9 and A10 mid brain dopaminergic neurons. J. Neurosci. 3: 1607–1619. Google Scholar 75 Mackay, A. V. P. 1980. Positive and negative symptoms and the role of dopamine. Br. J. Psychiatry 137: 379–383. 10.1192/bjp.137.4.379 CASPubMedWeb of Science®Google Scholar 76 Meltzer, H. Y. 1985. Dopamine and negative symploms in schizophrenia: critique of the type I-type II hypothesis. In Controversies in Schizophrenia: Changes and Constancies. M. Alpert, Ed.: 110–136. Guilford Press. New York , N.Y . Google Scholar 77 Clark, D. & F. J. White. 1987. D1 dopamine receptor–the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapase 1: 347–388. 10.1002/syn.890010408 CASPubMedWeb of Science®Google Scholar 78 Meltzer, H. Y. 1980. Relevance of dopamine autoreceptors for psychiatry: preclinical and clinical studies. Schizophr. Bull. 6: 456–475. 10.1093/schbul/6.3.456 PubMedWeb of Science®Google Scholar 79 Carlsson, A. 1988. Dopamine autoreceptors and schizophrenia. In Receptors and Ligands in Psychiatry. A. K. Sen & T. Lee, Eds: 1–10. Cambridge University Press. Cambridge , England . Google Scholar 80 Galloway, M. P., M. E. Wolf & R. H. Roth. 1986. Regulation of dopamine synthesis in medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo. J. Pharmacol. Exp. Ther. 236: 689–698. 10.1001/archpsyc.1986.01800040108015 CASPubMedWeb of Science®Google Scholar 81 Plantue, J. F., H. W. Steinbusch, J. Schipper, F. A. Dijcks, P. F. Verheijden & J. C. Stoof. 1981. D-2 dopamine receptors regulate the release of [3H] dopamine in rat cortical regions showing dopamine immunoreactive fibers. Neuroscience 20: 157–168. 10.1016/0306-4522(87)90009-1 Web of Science®Google Scholar 82 Talmaciu, R. K., I. S. Hoffmann & L. Y. Cubeddu. 1986. Dopamine autoreceptors modulate dopamine release from the prefrontal cortex. J. Neurochem. 47: 865–870. 10.1111/j.1471-4159.1986.tb00691.x CASPubMedWeb of Science®Google Scholar 83 Wolf, M. E., M. P. Galloway & R. H. Roth. 1986. Regulation of dopamine synthcsis in the medial prefrontal cortex: studies in brain slices, J. Pharmacol. Exp. Ther. 236: 699–707. CASPubMedWeb of Science®Google Scholar 84 Kilts, C. D., C. M. Anderson, T. D. Ely & J. K. Nishita. 1987. Absences of synthesis-modulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations. J. Neurosci. 7(12): 3961–3975. CASPubMedWeb of Science®Google Scholar 85 Fadda, F., G. L. Gessa, M. Marcow, E. Mosca & Z. Rossetti. 1984. Evidence for dopamine autoreceptors in mesocortical dopamine neurons. Brain Res. 293: 67–72. 10.1016/0006-8993(84)91453-7 CASPubMedWeb of Science®Google Scholar 86 Wolf, M. E., A. Y. Deutch & R. H. Roth. 1987. Pharmacology of central dopaminergic neurons. In Handbook of Schizophrenia. Neurochemistry and Neuropharmacology of Schizophrenia. F. A. Henn & L. E. DeLisi, Eds. 2: 101–147. Elsevier Science Publishers, B. V. Amsterdam , the Netherlands . Google Scholar 87 Gariano, R. F., J. M. Tepper, S. F. Sawyer, S. J. Young & P. M. Groves. 1989. Mesocortical dopaminergic neurons. I. Electrophysiological properties and evidence for soma-dendritic autoreceptors. Brain Res. Bull. 22: 511–516. 10.1016/0361-9230(89)90103-2 CASPubMedWeb of Science®Google Scholar 88 Costall, B., A. M. Domeney, R. J. Naylor & M. B. Tyers. 1987. Effects of the 5-HT3 receptor antagonist GR 38032F on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br. J. Pharmacol. 92: 881–894. 10.1111/j.1476-5381.1987.tb11394.x CASPubMedGoogle Scholar 89 Blandina, P., J. Goldfarb & J. P. Green. 1988. Activation of a 5-HT, receptor releases dopamine from rat striatal slices. Eur. J. Pharmacol. 155: 349–350. 10.1016/0014-2999(88)90528-6 CASPubMedWeb of Science®Google Scholar 90 Hagan, R. M., A. Butler, J. M. Hill, C. C. Jordan, S. J. Ireland & M. B. Tyers. 1987. Effect of the 5-HT3 receptor antagonist, GR 38032F on responses to injection of a neurokinin agonist into the ventral tegmental area of rat brain. Eur. J. Pharmacol. 138: 303–305. 10.1016/0014-2999(87)90450-X CASPubMedWeb of Science®Google Scholar 91 Costall, B., A. M. Domeney, M. E. Kelly, R. J. Naylor & M. B. Tyers. 1987. Antipsychotic potential of GR 38032F, a selective antagonist of 5-HT, receptors in the central nervous system. Br. J. Pharmacol. Proc. Suppl. 90: 89. Google Scholar 92 Schmidt, A. W. & S. J. Peroutka. 1989. Antidepressant interactions with 5-hydroxytryptamine3 receptor binding sites. Eur. J. Pharmacol. 163: 397–398. 10.1016/0014-2999(89)90215-X CASPubMedWeb of Science®Google Scholar 93 Tyers, M. B., B. Costall, A. Domeney, B. J. Jones, M. E. Kelley, R. J. Naylor & N. P. Oakley. 1987. The anxiolytic activity of 5-HT3 antagonists in laboratory animals. Neurosci. Lett. 29(Suppl.): S68. Google Scholar 94 Papp, M. 1988. Similar effects of diazepam and the 5-HT3 receptor antagonist ICS 205–930 on place avoidance conditioning. Eur. J. Pharmacol. 151: 321–324. 10.1016/0014-2999(88)90816-3 CASPubMedWeb of Science®Google Scholar 95 Johnston, A. & S. E. File. 1988. Effects of 5-HT2 antagonists in two animal tests of anxiety. Neurosci. Lett. 32(Suppl): S44. Google Scholar 96 Piper, D., N. Upton, D. Thomas & J. Nicholass. 1988. The effects of the 5-HT3 receptor antagonists BRL 43694 and GR 38032F in animal behavioral models of anxiety. Br. J. Pharmacol. 94: 314. Google Scholar 97 Peroutka, S. J. 1988. Species variations in 5-HT3 recognition sites labelled by [3H] quipazine in the central nervous system. Naunyn Schmiedebergs Arch. Pharmacol. 338: 472–475. 10.1007/BF00179316 CASPubMedWeb of Science®Google Scholar 98 Barnes, J. M., N. M. Barnes, B. Costall, J. W. Ironside & R. J. Naylor. 1989. Identification and characterization of 5-hydroxytryptamine3 recognition sites in human brain tissue. J. Neurochem. 53: 1787–1793,. 10.1111/j.1471-4159.1989.tb09244.x CASPubMedWeb of Science®Google Scholar 99 Engel, G., B. P. Richardson, P. Donatsch & P. Stadler. 1986. A new class of drugs: 5-HT3 receptor antagonists. Triangle 25: 123–130. Google Scholar 100 Claghorn, J., G. Honigfeld, F. S. Abuzzahab, R. Wang, R. Steinbook, V. Tuason & G. Klerman. 1987. The risks and benefits of clozapine versus chlorpormazine. J. Clin. Psychopharmacol. 7: 377–384. 10.1097/00004714-198712000-00002 CASPubMedWeb of Science®Google Scholar 101 Kane, J., G. Honigfeld, J. Singer & H. Meltzer. 1988. Clozapine for the treatment-resistant schizophrenic: a double-blind comparison versus chlorpromazine/benztropine. Arch. Gen. Psychiatry 45: 789–796. 10.1001/archpsyc.1988.01800330013001 CASPubMedWeb of Science®Google Scholar 102 Meltzer, H. Y. 1989. Clinical studies on the mechanism of action of clozapine: the dopamine serotonin hypothesis of schizophrenia. Psychopharmacology 99(Suppl.): S18–S27. 10.1007/BF00442554 PubMedWeb of Science®Google Scholar 103 Meltzer, H. Y. 1989. Clozapine: clinical advantages and biological mechanisms. In Schizophrenia: a Scientific Focus. C. Schulz & C. Tamminga, Eds.: 302–309. Oxford Press. New York , N.Y . Google Scholar 104 Meltzer, H. Y., R. So, R. J. Miller & V. S. Fang. 1979. Comparison of the effects of substituted benzamides and standard neuroleptics on the binding of 3H-spiroperidol in the rat pituitary and striatum with in vivo effects on rat prolactin secretion. Life Sci. 25: 573–584. 10.1016/0024-3205(79)90551-4 CASPubMedWeb of Science®Google Scholar 105 Meltzer, H. Y., S. Daniels & V. S. Fang. 1975. Clozapine increases rat serum prolactin levels. Life Sci. 17: 339–342. 10.1016/0024-3205(75)90482-8 CASPubMedWeb of Science®Google Scholar 106 Gudelsky, G. A., J. F. Nash, S. A. Berry & H. Y. Meltzer. 1989. Basic biology of clozapine: the dopamine serotonin hypothesis of schizophrenia. Psychopharmacology 99:(Suppl.): S13–S17. 10.1007/BF00442553 PubMedWeb of Science®Google Scholar 107 Meltzer, H. Y., B. Bastani, L. F. Ramirez & S. Matsubara. 1989. Clozapine: new research on efficacy and mechanism of action. Eur. Arch. Psychiatry Neurol. Sci. 238: 332–339. 10.1007/BF00449814 CASPubMedWeb of Science®Google Scholar 108 Meltzer, H. Y. 1990. Clozapine: mechanism of action in relation to its clinical advantages. In Recent Advances in Schizophrenia. A. Kales, G. N. Stefanos & J. A. Talbott, Eds.: 237–246. Springer Verlag. Heidelberg, New York & Tokyo . 10.1007/978-1-4612-3248-3_11 Web of Science®Google Scholar 109 Rebec, G. V., T. R. Bashore, K. S. Zimmerman & K. D. Alloway. 1979. “Classical” and “atypical” antipsychotic drugs: differential antagonism of amphetamine- and apomorphine-induced alterations of spontaneous neuronal activity in the neostriatum and nucleus accumbens. Pharmacol. Biochem. Behav. 11: 529–538. 10.1016/0091-3057(79)90036-4 CASPubMedWeb of Science®Google Scholar 110 Anden, N. E. & M. Grabowska-Anden. 1980. Drug effects on pre- and post-synaptic dopamine receptors. Adv. Biochem. Psychopharmacol. 24: 57–64. CASPubMedGoogle Scholar 111 Walters, J. R. & R. H. Roth. 1976. Dopaminergic neurons: an in vivo system of measuring drug interactions with presynaptic receptors. Naunyn Schmeidebergs Arch. Pharmacol. 296: 5–14. 10.1007/BF00498834 CASPubMedWeb of Science®Google Scholar 112 Huff, R. & R. N. Adams. 1980. Dopamine release in nucleus accumbens and striatum by clozapine: simultaneous monitoring by in vivo electrochemistry. Neuropharmacology 19: 587–590. 10.1016/0028-3908(80)90030-1 CASPubMedWeb of Science®Google Scholar 113 Bunney, B. S., J. R. Walters, R. H. Roth & G. K. Aghajanian. 1973. Dopaminergic neurons: effects of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185: 560–571. CASPubMedWeb of Science®Google Scholar 114 Chiodo, L. A. & B. S. Bunney. 1983. Typical and atypical neuroleptics differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J. Neurosci. 3: 1607–1619. 10.1523/JNEUROSCI.03-08-01607.1983 Google Scholar 115 Lane, R. F. & C. D. Blaha. 1986. Electrochemistry in vivo: application to CNS pharmacology. Ann. N.Y. Acad. Sci. 473: 50–69. 10.1111/j.1749-6632.1986.tb23603.x CASPubMedWeb of Science®Google Scholar 116 Blaha, C. D. & R. F. Lane. 1987. Chronic treatment with classical and atypical antipsychotic drugs differentially decrease dopamine release in striaturn and nucleus accumbens in vivo. Neurosci Lett. 78: 188–204. 10.1016/0304-3940(87)90633-1 Web of Science®Google Scholar 117 Hand, T. H., S-T. Hu & R. Y. Wang. 1987. Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (AS) dopamine neurons. Brain Res. 415: 257–269. 10.1016/0006-8993(87)90207-1 CASPubMedWeb of Science®Google Scholar 118 Hetey, L., K. Drescher & W. Oelssner. 1982. Different influence of antipsychotics and serotonin antagonists on presynaptic receptors modulating the synaptosomal release of dopamine and serotonin. Wiss. Z. Humbolt Univ. Berl. 131: 487–489. Google Scholar 119 Drescher, K. & L. Hetey. 1988. Influence of antipsychotics and serotonin antagonists on presynaptic receptors modulating the release of serotonin in synaptosomcs of the nucleus accumbens of rats. Neuropharmacology 27: 31–36. 10.1016/0028-3908(88)90197-9 CASPubMedWeb of Science®Google Scholar 120 Ashby, C. R., E. Edwards, K. L. Harkins & R. Y. Wang. 1989. Differential effects of typical and atypical antipsychotic drugs on the suppressant action of 2-methylserotonin on medial prefrontal cortical cells: a microiontophoretic study. Eur. J. Pharmacol. 166: 583–584. 10.1016/0014-2999(89)90382-8 CASPubMedWeb of Science®Google Scholar 121 Compton, D. R. & K. M. Johnson. 1989. Effects of acute and chronic clozapine and haloperidol on in vivo release of acetylcholine and dopamine from striatum and nucleus accumbens. J. Pharmacol. Exp. Ther. 248: 521–530. CASPubMedWeb of Science®Google Scholar 122 Ichikawa, J. & H. Y. Meltzer. The effect of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied by in vivo microdialysis. Eur. J. Pharmacol. 176: 371–374. Google Scholar 123 Imperato, A. & L. Angelucci. 1988. Effects of the atypical neuroleptics clozapine and fluperlapine on the in vivo dopamine release in the dorsal striatum and in the prefrontal cortex. Psychopharmacol. 96(Suppl 1. Abstracts of the XVI CINP Congress, Munich): 79. Google Scholar 124 O'Connor, W. T., K. L. Drew & V. Ungerstedt. 1989. Differences in dopamine release and metabolism in rat striatal subregions following acute clozapine using in vivo microdialysis. Neurosci. Lett. 99: 211–216. 10.1016/0304-3940(89)90512-0 Web of Science®Google Scholar 125 Richelson, E. 1984. Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. J. Clin Psychiatry 45: 331–336. CASPubMedWeb of Science®Google Scholar 126 Andersen, P. H. & C. Braestrup. 1986. Evidence for different states of the dopamine D-1 receptor: clozapine and fluperlapine may preferentially label an adenylate cyclase-coupled state of the D-1 receptor. J. Neurochem. 47: 1830–1831. 10.1111/j.1471-4159.1986.tb13094.x CASWeb of Science®Google Scholar 127 Farde, L. F.-A. Wiesel, A-L. Nordstrom & G. Sedvall. 1989. D-1 and D2 dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99(Suppl.): S28–S31. 10.1007/BF00442555 PubMedWeb of Science®Google Scholar 128 Meltzer, H. Y., S. Matsubara & J-C. Lee. 1989. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin: pKi values. J. Pharmacol. Exp. Ther. 251: 238–246. CASPubMedWeb of Science®Google Scholar 129 Matsubara, S. & Meltzer, H. Y. 1989. Effect of typical and atypical antipsychotic drugs on 5-HT2 receptor density in rat cerebral cortex. Life Sci. 45: 1397–1406. 10.1016/0024-3205(89)90027-1 CASPubMedWeb of Science®Google Scholar 130 Meltzer, H. Y., B. Bastani, K. Y. Kwon, L. F. Ramirez, S. Burnett & J. Sharpe. 1989. A prospective study of clozapine in treatment-resistant patients. I. Preliminary report. Psychopharmacology 99(Suppl.): S68–S72. 10.1007/BF00442563 PubMedWeb of Science®Google Scholar 131 Feighner, J. P., C. H. Merideth & G. A. Hendrlckson. 1982. A double-blind comparison of buspirone and diazepam in outpatients with generalized anxiety disorder. J. Clin. Psychiatry 43: 103–107. CASPubMedWeb of Science®Google Scholar 132 Jacobson, A. F., P. A. Dominguez, B. J. Goldstein & R. M. Steinbook. 1985. Comparison of buspirone and diazepam in generalized anxiety disorder. Pharmacotherapy 5: 290–296. 10.1002/j.1875-9114.1985.tb03430.x CASPubMedWeb of Science®Google Scholar 133 Schweizer, E. E., J. Amsterdam, K. Rickels, M. Kaplan & M. Droba. 1985. Open trials of buspirone in the treatment of major depressive disorder. Psycho. Pharmacol. Bull. 22: 183–185. Web of Science®Google Scholar 134 Peroutka, S. J. 1985. Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain. Brain Res. 344: 167–171. 10.1016/0006-8993(85)91204-1 CASPubMedWeb of Science®Google Scholar 135 Yocca, F. D., D. A. Hyslop, D. P. Taylor & S. Maayani. 1986. Buspirone and gepirone: partial agonists at the 5-HT1A receptor linked to adenylate cyclase in rat and guinea pig hippocampal preparations. Fed. Proc. 45: 436. Web of Science®Google Scholar 136 McMillen, B. A., S. M. Scott, H. L. Williams & M. K. Sanfhera. 1987. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn Schmiedebergs Arch. Pharmacol. 335: 454–464. 10.1007/BF00165563 CASPubMedWeb of Science®Google Scholar 137 Sprouse, J. S. & G. K. Aghajanian. 1987. Electrophysiological responses of serotonergic dorsal raphé neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9. 10.1002/syn.890010103 CASPubMedWeb of Science®Google Scholar 138 Blier, P. & C. DeMontigny. 1987. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1: 470–480. 10.1002/syn.890010511 CASPubMedWeb of Science®Google Scholar 139 Lucki, I. 1986. The nonbenzodiazepine anxiolytics buspirone and ipsaperone antagonize serotonin-mediated behavioral responses. Psychopharmacology 89: S55. Google Scholar 140 Hamon, M., C.-M. Fattaccini, J. Adrien, M.-C. Gallissot, P. Martin & H. Gozlan. 1988. Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-hydroxytryptamine1A agonists with potential anxiolytic properties. J. Pharmacol. Exp. Ther. 246: 745–752. CASPubMedWeb of Science®Google Scholar 141 Kennett, G. A., C. T. Dourish & G. Gurzon. 1987. Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur. J. Pharmacol. 134: 265–274. 10.1016/0014-2999(87)90357-8 CASPubMedWeb of Science®Google Scholar Citing Literature Volume604, Issue1Presynaptic Receptors and the Question of Autoregulation of Neurotransmitter ReleaseAugust 1990Pages 353-371 ReferencesRelatedInformation

Referência(s)