Artigo Revisado por pares

Ion Uptake by Young Wheat Plants. I. Time Course of the Absorption of Potassium and Chloride Ions

1953; Wiley; Volume: 6; Issue: 3 Linguagem: Inglês

10.1111/j.1399-3054.1953.tb08416.x

ISSN

1399-3054

Autores

Gillian Butler,

Tópico(s)

Plant nutrient uptake and metabolism

Resumo

Physiologia PlantarumVolume 6, Issue 3 p. 594-616 Ion Uptake by Young Wheat Plants. I. Time Course of the Absorption of Potassium and Chloride Ions G. W. Butler, G. W. Butler Botanical Laboratory, Lund 1Search for more papers by this author G. W. Butler, G. W. Butler Botanical Laboratory, Lund 1Search for more papers by this author First published: July 1953 https://doi.org/10.1111/j.1399-3054.1953.tb08416.xCitations: 21 1 Address after Die. 10, 1953: Grasslands Division, D.S.I.H., Palmerston North, New Zealand. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Alberda, Th.: The influence of some external factors on growth on growth and phosphate uptake of maize plants of different salt condition. Rec. trav. Bot. néerl., 41. 541: 1948. Google Scholar 2 Arisz, W. H.: Contribution to a theory on the absorption of salts by the plant and their transport in parenchymatous tissue. Proc. Koninkl. Nederland. Akad. Wetenschap. 48: 420. 1945. CASGoogle Scholar 3 Arisz, W. H. Uptake and transport of chloride by parenchymatic tissue of leaves of Vallisneria spiralis. I. The active uptake of chloride. Ibid. 50: 1019. 1947. II. Analysis of the transport of chlorine. — Ibid. 50: 1235. 1047. III. Discussion of the transport and the uptake. Vacuole secretion theory. — Ibid. 51: 25. 1948. Google Scholar 4 Arisz, W. H. Transport of organic compounds. Ann. Rev. Plant Phys. 3: 109, 1947. 10.1146/annurev.pp.03.060152.000545 Web of Science®Google Scholar 5 Arnold, A.: Über der Functionsmechanismus der Endodermiszellen der Wurzeln. Protoplasma 41: 189, 1942. 10.1007/BF01248222 Web of Science®Google Scholar 6 Brooks, S. C.: Selective accumulation with reference to ion exchange by the protoplasm. Trans. Faraday Soc. 33: 1002. 1937. 10.1039/tf9373301002 CASWeb of Science®Google Scholar 7 Brooks, S. C. The intake of radioactive isotopes by living cells. Cold Spring Harbor Symposia Quant. Biot. 8: 171. 1940. 10.1101/SQB.1940.008.01.018 CASGoogle Scholar 8 Broyer, T. C.: Further observations on the absorption and translocation of inorganic solutes using radioactive isotopes with plants. Plant Physiol. 25: 367. 1950. 10.1104/pp.25.3.367 CASPubMedWeb of Science®Google Scholar 9 Broyer, T. C. The nature of the process of inorganic solute accumulation in roots. — E. Truog Mineral Nutrition of Plants, p. 187. Univ. of Wisconsin press. 1951. Google Scholar 10 Broyer, T. C. & Hoagland, D. R.: Metabolic activities of roots and their hearing on the relation of upward movement of sails and water in plants. Amer. J, Bot. 30: 261. 1943. 10.2307/2437453 CASGoogle Scholar 11 Burström, H.: Studies on the buffer systems of cells. Arkiv f. Botanik, 32 A: 1. 1945. Google Scholar 12 Burström, H. Studies on the growth and metabolism of roots. I. The action of n-diamylacetic acid on root elongation. Physiol. Plant. 2: 197. 1949. 10.1111/j.1399-3054.1949.tb07479.x Web of Science®Google Scholar 13 Burström, H. Studies on the growth and metabolism of roots. II. n-diamylacetic acid and assimilation of nitrate. Ibid. 2: 332. 1949. Web of Science®Google Scholar 14 Burström, H. The mechanism of ion absorption. – E. Truog Mineral Nutrition of Plants, p. 251. Univ. of Wisconsin press. 1951. Google Scholar 15 Burström, H. Mineralstoffwechsel. Fortsch. Bot. 13: 250. 1951. Google Scholar 16 Butler, G. W.: Ion uptake by young wheat plants. II. The apparent free space of wheat roots. Physiol. Plant. 6: 6l7. 1953. 10.1111/j.1399-3054.1953.tb08417.x CASWeb of Science®Google Scholar 17 Commoner, B. & Mazia, P.: The mechanism of auxin action. Plant Physiol. 17: 082. 1942. 10.1104/pp.17.4.682 CASGoogle Scholar 18 Crafts, A. S. & Broyer, T. C.: Migration of salts and water into xylem of the roots of higher plants. Ann. J. Bot. 25: 529. 1938. 10.2307/2436683 CASWeb of Science®Google Scholar 19 Helder, H. J.: Analysis of the process of anion uptake of intact maize plants. Acta Bot. Neerl. 1: 361. 1952. 10.1111/j.1438-8677.1952.tb00019.x CASWeb of Science®Google Scholar 20 Hinton, C. L.: The polyuronides. Ann. Rev. Biochem. 20: 67. 1951. 10.1146/annurev.bi.20.070151.000435 CASPubMedWeb of Science®Google Scholar 21 Hoagland, D. R. & Broyer, T. C.: General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11: 471. 1936. 10.1104/pp.11.3.471 CASPubMedWeb of Science®Google Scholar 22 Hoagland, D. R. Accumulation of salt and permeability in plant cells. J. Gen. Physiol. 25: 865. 1942. 10.1085/jgp.25.6.865 CASPubMedGoogle Scholar 23 Hope, A. B. & Stevens, P. G.: Electric potential differences in bean roots and their relation to salt uptake. Aust. J. Sci. Res. B. 5: 335. 1952. 10.1071/BI9520335 CASPubMedWeb of Science®Google Scholar 24 Humphries, E. C.: The absorption of ions by excised root systems. I Apparatus and preliminary experiments. J. Exp. Bot. 1: 282. 1950. 10.1093/jxb/1.3.282 Web of Science®Google Scholar 25 Humphries, E. C. The absorption of ions by excised root systems. II. Observations on roots of barley grown in solutions deficient in phosphorus, nitrogen or potassium. Ibid. 2: 344. 1951. CASWeb of Science®Google Scholar 26 Humphries, E. C. The absorption of ions by excised root systems. III. Observations on roots of pea plants grown in solutions deficient in phosphorus, nitrogen or potassium. Ibid. 3: 291. 1952. CASWeb of Science®Google Scholar 27 Hylmö, B.: Transpiration and ion absorption. Physiol. Plant. 6: 333. 1953. 10.1111/j.1399-3054.1953.tb08952.x Web of Science®Google Scholar 28 Jacobson, L. & Overstreet, H.: The nature of absorption of radioactive isotopes by living tissues as illustrated by experiments with barley plants. Am. J. Bot. 34: 415. 1947. 10.2307/2437152 CASPubMedWeb of Science®Google Scholar 29 Jacobson, L. Overstreet, B., King, H. M. & Handley, R.: A study of potassium absorption by barley roots. Plant Physiol. 25: 639. 1950. 10.1104/pp.25.4.639 CASPubMedWeb of Science®Google Scholar 30 Keys, A.: The microdetermination of chlorides in biological materials. J. Biol. Chem. 119: 389. 1937. CASWeb of Science®Google Scholar 31 Ling, G. N.: The role of phosphate in the maintenance of the resting potential and selective ionic accumulation in frog muscle cells. Phosphorus Metabolism. Vol. 2, p. 748. W. D. McElroy & B. Glass. The John Hopkins press. 1952. Google Scholar 32 Lundegårdh, H.: The time course of the ion absorption of wheat roots and the influence of the concentration. Physiol. Plant. 2: 388. 1949. 10.1111/j.1399-3054.1949.tb07663.x Web of Science®Google Scholar 33 Lundegårdh, H. The effect of indole acetic acid on the bleeding of wheat roots. Arkiv f. Botanik. 1: 295. 1950. Google Scholar 34 Mattson, S., Eriksson, E., Vahtras, K. & Williams, E. G.: Phosphate relationships of soil and plant. I. Membrane equilibria and phosphate uptake. Ann. Agric. Coll. Sweden. 16: 457. 1949. CASGoogle Scholar 35 Milthorpe, J. & Robertson, B. N.: Studies in the metabolism of plant cells. VI. Salt respiration and accumulation in barley roots. Aust. J. Exp. Biot. Med. Sci. 26: 189. 1948. 10.1038/icb.1948.19 CASPubMedWeb of Science®Google Scholar 36 Overstreet, R. & Broyer, T. C.: The nature of absorption of radioactive isotopes by living tissues as illustrated by experiments with barley plants. Proc. Nat. Acad. Sci. 26: 16. 1940. 10.1073/pnas.26.1.16 CASPubMedGoogle Scholar 37 Overstreet, R. & Jacobson, L.: Mechanisms of ion absorption by roots. Ann. Rev. Plant Physiol. 3: 189. 1952. 10.1146/annurev.pp.03.060152.001201 Web of Science®Google Scholar 38 Overstreet, R. Jacobson, L. & Handley, R.: The effect of calcium on the absorption of potassium by barley roots. Plant Physiol. 27: 583. 1952. 10.1104/pp.27.3.583 CASPubMedWeb of Science®Google Scholar 39 Prevot, P. & Steward, F. C.: Salient features of the root system relative to the problem of salt absorption. Plant Physiol. 11: 509. 1936. 10.1104/pp.11.3.509 CASPubMedWeb of Science®Google Scholar 40 Rehberg, P. B.: The determination of chlorine in blood and tissues by microtitration. Biochem. J. 20: 483. 1926. 10.1042/bj0200483 CASPubMedWeb of Science®Google Scholar 41 Rehberg, P. B. A method of microtitration. Ibid. 19: 270. 1925. CASPubMedGoogle Scholar 42 Rhodes, A., Templeman, W. G. & Thruston, M. N.: The effect of the plant growth regulator 4-C1-2 Me-phenoxyacetic acid on the mineral and nitrogen contents of plants. Ann. Bot. 14: 181. 1950. CASWeb of Science®Google Scholar 43 Robertson, R. N.: Studies in the metabolism of plant cells. II. Effects of temperature on accumulation of potassium chloride and on respiration. Aust. J. Exp. Biol. Med. Sci. 22: 237. 1944. 10.1038/icb.1944.34 CASGoogle Scholar 44 Robertson, R. N. Mechanism of absorption and transport of inorganic nutrients in plants. Ann. Rev. Plant Physiol. 2: 1. 1951. 10.1146/annurev.pp.02.060151.000245 CASWeb of Science®Google Scholar 45 Sandström, B.: The ion absorption in roots lacking epidermis. Physiol. Plant. 3: 496. Google Scholar 46 Steward, F. C. & Harrison, J. H.: The absorption of rubidium bromide by potato disks. Ann. Bol. N. S. 3: 427. 1939. CASGoogle Scholar 47 Stiles, W. & Skelding, A. D.: The salt relations of plant tissues. II. The absorption of manganese salts by storage tissue. Ann. Bot. N. S. 4: 673. 1940. 10.1093/aob/4.4.673 CASGoogle Scholar 48 Strugger, S.: Pflanzephysiologische Praktika. II. Prakticum der Zell- und Gewebe-physiologie der Pflanze. — Springer-Verlag. 1949. 10.1007/978-3-662-22309-3 Google Scholar 49 Sutcliffe, J. F.: The influence of internal ion concentration on potassium accumulation and salt respiration of red beet root tissue. J. Exp. Bot. 3: 59. 1952. 10.1093/jxb/3.1.59 CASWeb of Science®Google Scholar 50 Ulrich, A.: Metabolism of non-volatile organic acids in excised barley roots as related to cation anion balance during salt accumulation. Am. J. Bot. 28: 526. 1941. 10.2307/2436998 CASGoogle Scholar 51 Ulrich, A. Metabolism of non-volatile organic acids in excised barley roots as influenced by temperature. oxygen tension and salt concentration. Am. J. Bot. 29: 220. 1942. 10.2307/2437673 CASGoogle Scholar 52 Viets, F. G.: Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol. 19: 466. 1944. 10.1104/pp.19.3.466 CASPubMedGoogle Scholar 53 Williams, D. E. & Coleman, N. T.: Cation exchange properties of plant root surfaces. Plant and Soil. 2: 243. 1950. 10.1007/BF01852352 CASWeb of Science®Google Scholar 54 Wilske, C. & Burström, H.: The growth-inhibiting action of thiophenoxy acetic acids. Physiol. Plant. 3: 58. 1950. 10.1111/j.1399-3054.1950.tb07492.x Web of Science®Google Scholar Citing Literature Volume6, Issue3July 1953Pages 594-616 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX