CT Dose Index and Patient Dose: They Are Not the Same Thing
2011; Radiological Society of North America; Volume: 259; Issue: 2 Linguagem: Inglês
10.1148/radiol.11101800
ISSN1527-1315
AutoresCynthia H. McCollough, Shuai Leng, Lifeng Yu, Dianna D. Cody, John M. Boone, Michael F. McNitt‐Gray,
Tópico(s)Radiology practices and education
ResumoHomeRadiologyVol. 259, No. 2 PreviousNext Reviews and CommentaryEditorialsCT Dose Index and Patient Dose: They Are Not the Same ThingCynthia H. McCollough , Shuai Leng, Lifeng Yu, Dianna D. Cody, John M. Boone, Michael F. McNitt-GrayCynthia H. McCollough , Shuai Leng, Lifeng Yu, Dianna D. Cody, John M. Boone, Michael F. McNitt-GrayAuthor AffiliationsFrom the Departments of Radiology of Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., S.L., L.Y.); University of Texas M.D. Anderson Cancer Center, Houston, Tex (D.D.C.); University of California–Davis, Sacramento, Calif (J.M.B.); and University of California, Los Angeles, Los Angeles, Calif (M.F.M.G.).Address correspondence to C.H.M. (e-mail: [email protected]).Cynthia H. McCollough Shuai LengLifeng YuDianna D. CodyJohn M. BooneMichael F. McNitt-GrayPublished Online:May 1 2011https://doi.org/10.1148/radiol.11101800MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In AbstractEstimates of individual patient risk, and epidemiologic studies assessing potential late effects, must use patient size–specific dose estimates—they cannot use only scanner output (volume CT dose index or dose-length product).References1 Shope TB, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission x-ray computed tomography. Med Phys 1981;8(4):488–495. Crossref, Medline, Google Scholar2 American Association of Physicists in Medicine. Standardized methods for measuring diagnostic x-ray exposures. New York, NY: American Association of Physicists in Medicine, 1990. Google Scholar3 American Association of Physicists in Medicine. The measurement, reporting and management of radiation dose in CT. Report 96. AAPM Task Group 23 of the Diagnostic Imaging Council CT Committee. College Park, Md: American Association of Physicists in Medicine, 2008. Google Scholar4 European Commission. European guidelines on quality criteria for computed tomography. EUR 16262 EN. Luxembourg: European Commission, 2000. Google Scholar5 International Electrotechnical Commission. Medical electrical equipment. Part 2-44: Particular requirements for the safety of x-ray equipment for computed tomography. IEC publication no. 60601-2-44. Ed. 2.1. Geneva, Switzerland: International Electrotechnical Commission Central Office, 2002. Google Scholar6 Performance standards for ionizing radiation-emitting products: diagnostic x-ray systems and their major components. 21 CFR §1020.30 (2009). Google Scholar7 Bauhs JA, Vrieze TJ, Primak AN, Bruesewitz MR, McCollough CH. CT dosimetry: comparison of measurement techniques and devices. RadioGraphics 2008;28(1):245–253. Link, Google Scholar8 Jucius RA, Kambic GX. Radiation dosimetry in computed tomography: application of optical instrumentation in medicine (part VI). Proc Soc Photo Opt Instrum Eng 1977;127:286–295. Google Scholar9 McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys 1999;26(11):2223–2230. Crossref, Medline, Google Scholar10 Zink FE, McCollough CH. The measurement of radiation dose profiles for electron-beam computed tomography using film dosimetry. Med Phys 1994;21(8):1287–1291. Crossref, Medline, Google Scholar11 Boone JM. The trouble with CTD100. Med Phys 2007;34(4):1364–1371. Crossref, Medline, Google Scholar12 Dixon RL. A new look at CT dose measurement: beyond CTDI. Med Phys 2003;30(6):1272–1280. Crossref, Medline, Google Scholar13 Dixon RL. Restructuring CT dosimetry: a realistic strategy for the future—requiem for the pencil chamber. Med Phys 2006;33(10):3973–3976. Crossref, Medline, Google Scholar14 McCollough CH. It is time to retire the computed tomography dose index (CTDI) for CT quality assurance and dose optimization: against the proposition. Med Phys 2006;33(5):1190–1191. Medline, Google Scholar15 Mori S, Endo M, Nishizawa K, et al.. Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry. Med Phys 2005;32(4):1061–1069. Crossref, Medline, Google Scholar16 Dixon RL, Boone JM. Cone beam CT dosimetry: a unified and self-consistent approach including all scan modalities—with or without phantom motion. Med Phys 2010;37(6):2703–2718. Crossref, Medline, Google Scholar17 Leng S, Vrieze T, Yu L, McCollough C. SU‐GG‐I‐38: a direct skin dose calculation method in CT scans without table motion: influence of patient size and beam collimation. Med Phys 2010;37(6):3110. Crossref, Google Scholar18 Rong X, Cody D. How accurate is estimating CT skin dose based on CTDI? Med Phys 2010;37(6):3463. Crossref, Google Scholar19 McCollough CH, Christner JA, Rueda V, Ramirez Giraldo J, Vrieze TJ, Leng S. Estimating patient-specific dose from scanner output (CTDIvol): yes we can! [abstr]. In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2010; 380. Google Scholar20 McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT—radiation dose in CT. RadioGraphics 2002;22(6):1541–1553. Link, Google Scholar21 Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C. Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology 2004;233(2):515–522. Link, Google Scholar22 DeMarco JJ, Cagnon CH, Cody DD, et al.. Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol 2007;52(9):2583–2597. Crossref, Medline, Google Scholar23 Turner A, Zankl M, Demarco JJ, Angel E, Zhang D, McNitt-Gray MF. A method to estimate organ doses from multidetector row CT abdominal exams from patient sized corrected CT dose index (CTDI) values: a Monte Carlo study [abstr]. In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2009; 472. Google Scholar24 Turner A, Zhang D, Khatonabadi M, et al.. The feasibility of patient size–corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys (in press). Google Scholar25 Turner AC, Zankl M, DeMarco JJ, et al.. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys 2010;37(4):1816–1825. Crossref, Medline, Google Scholar26 Leng S, Vrieze T, Yu L, McCollough C. A direct skin dose calculation method in CT scans without table motion: influence of patient size and beam collimation. Presented at the 52nd Annual Meeting of the American Association of Physicists in Medicine, Philadelphia, Pa, July 18–22, 2010. Google Scholar27 Leng S, Vrieze TJ, Yu L, McCollough CH. Skin dose estimation from CT perfusion studies: influence of patient size, beam collimation and scanner type [abstr]. In: Radiological Society of North America scientific assembly and annual meeting program. Oak Brook, Ill: Radiological Society of North America, 2010; 423. Google Scholar28 Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 2010;194(4):881–889. Crossref, Medline, Google Scholar29 McCollough CH, Christner JA, Kofler JM. How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 2010;194(4):890–896. Crossref, Medline, Google Scholar30 Shrimpton P. Assessment of patient dose in CT. Appendix C, European guidelines for multislice computed tomography. Contract number FIGM-CT2000-20078-CT-TIP. Funded by the European Commission. 2004. Google Scholar31 Shrimpton P, Hillier M, Lewis M, Dunn M. Doses from computed tomography (CT) examinations in the UK—2003 review. Chilton, England: National Radiological Protection Board, 2005. Google Scholar32 Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources. Parts I-VII (ORNL/TM-8381). Oak Ridge, Tenn: Oak Ridge National Laboratory, 1987; 1–74. Google Scholar33 Kleinman PL, Strauss KJ, Zurakowski D, Buckley KS, Taylor GA. Patient size measured on CT images as a function of age at a tertiary care children’s hospital. AJR Am J Roentgenol 2010;194(6):1611–1619. Crossref, Medline, Google Scholar34 Smith-Bindman R, Lipson J, Marcus R, et al.. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 2009;169(22):2078–2086. Crossref, Medline, Google Scholar35 Kalra MK, Maher MM, Toth TL, et al.. Techniques and applications of automatic tube current modulation for CT. Radiology 2004;233(3):649–657. Link, Google Scholar36 Kalra MK, Maher MM, D’Souza RV, et al.. Detection of urinary tract stones at low-radiation-dose CT with z-axis automatic tube current modulation: phantom and clinical studies. Radiology 2005;235(2):523–529. Link, Google Scholar37 Wilting JE, Zwartkruis A, van Leeuwen MS, Timmer J, Kamphuis AG, Feldberg M. A rational approach to dose reduction in CT: individualized scan protocols. Eur Radiol 2001;11(12):2627–2632. Crossref, Medline, Google Scholar38 Schmidt B, Kalender WA. A fast voxel-based Monte Carlo method for scanner- and patient-specific dose calculations in computed tomography. Physica Medica 2002;18(2):43–53. Google Scholar39 Söderberg M, Gunnarsson M. Automatic exposure control in computed tomography: an evaluation of systems from different manufacturers. Acta Radiol 2010;51(6):625–634. Crossref, Medline, Google Scholar40 van Straten M, Deak P, Shrimpton PC, Kalender WA. The effect of angular and longitudinal tube current modulations on the estimation of organ and effective doses in x-ray computed tomography. Med Phys 2009;36(11):4881–4889. Crossref, Medline, Google Scholar41 Angel E, Yaghmai N, Jude CM, et al.. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT. Phys Med Biol 2009;54(3):497–512. Crossref, Medline, Google Scholar42 Angel E, Yaghmai N, Jude CM, et al.. Dose to radiosensitive organs during routine chest CT: effects of tube current modulation. AJR Am J Roentgenol 2009;193(5):1340–1345. Crossref, Medline, Google Scholar43 Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA. Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 2008;18(4):759–772. Crossref, Medline, Google Scholar44 Rizzo S, Kalra M, Schmidt B, et al.. Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol 2006;186(3):673–679. Crossref, Medline, Google Scholar45 McCollough CH, Bruesewitz MR, Kofler JM. CT dose reduction and dose management tools: overview of available options. RadioGraphics 2006;26(2):503–512. Link, Google Scholar46 Graser A, Wintersperger BJ, Suess C, Reiser MF, Becker CR. Dose reduction and image quality in MDCT colonography using tube current modulation. AJR Am J Roentgenol 2006;187(3):695–701. Crossref, Medline, Google Scholar47 Mulkens TH, Bellinck P, Baeyaert M, et al.. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 2005;237(1):213–223. Link, Google Scholar48 Kalra MK, Rizzo S, Maher MM, et al.. Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology 2005;237(1):303–308. Link, Google Scholar49 Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S. Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 2004;232(2):347–353. Link, Google Scholar50 Kalra MK, Maher MM, Kamath RS, et al.. Sixteen–detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. Radiology 2004;233(1):241–249. Link, Google Scholar51 Jakobs TF, Wintersperger BJ, Herzog P, et al.. Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 2003;13(8):1923–1930. Crossref, Medline, Google Scholar52 Jakobs TF, Becker CR, Ohnesorge B, et al.. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12(5):1081–1086. Crossref, Medline, Google Scholar53 Greess H, Nömayr A, Wolf H, et al.. Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose). Eur Radiol 2002;12(6):1571–1576. Crossref, Medline, Google Scholar54 Greess H, Wolf H, Baum U, et al.. Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 2000;10(2):391–394. Crossref, Medline, Google Scholar55 Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 1999;26(11):2248–2253. Crossref, Medline, Google Scholar56 Gies M, Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 1999;26(11):2235–2247. Crossref, Medline, Google Scholar57 Boone JM. Dose spread functions in computed tomography: a Monte Carlo study. Med Phys 2009;36(10):4547–4554. Crossref, Medline, Google ScholarArticle HistoryReceived September 8, 2010; revision requested October 25; revision received December 16; final version accepted December 27.Published online: May 2011Published in print: May 2011 FiguresReferencesRelatedDetailsCited ByIdentification of the computed tomography dose index for tube voltage variations in a polyester-resin phantomLintang N.Fatichah, ChoirulAnam, HeriSutanto, AriijNaufal, Dito A.Rukmana, GeoffDougherty2023 | Applied Radiation and Isotopes, Vol. 192Development of size-specific dose estimates for common computed tomography examinations: a study in GhanaBenardOhene-Botwe, SamuelAnim-Sampong, JosephineNkansah2023 | Journal of Radiological Protection, Vol. 43, No. 1Radiation exposure in computed tomographyDeniseBos, NikaGuberina, SebastianZensen, MarcelOpitz, MichaelForsting, AxelWetter2023 | Deutsches Ärzteblatt internationalAccuracy of IndoseCT for Measuring Effective Diameter from axial CT ImagesNihayati Rizki, Choirul Anam, Heri Sutanto, Geoff Dougherty2023 | International Journal of Scientific Research in Science and TechnologyFeasibility of size-specific organ-dose estimates based on water equivalent diameter for common head CT examinations: a Monte Carlo studyMTahiri, YBenameur, MMkimel, REl Baydaoui, M RMesardi2023 | Journal of Radiological Protection, Vol. 43, No. 2An in-house step-wedge phantom for the calibration of pixel values in CT localizer radiographs for water-equivalent diameter measurementSitti MRif’ah, ChoirulAnam, HeriSutanto, Rin HAsiah, HeryaniCholid, GeoffDougherty2023 | Polish Journal of Medical Physics and Engineering, Vol. 29, No. 1Real-time germanium-doped optical fibers for clinical computed tomography dosimetryH.G.Sarhan, S.M.Saini, N.M.Bahari, D.A.Bradley, H.T.Zubair, A.Basaif, A.A.Oresegun, H.A.Abdul Rashid, N.M. Noor2023 | Radiation Physics and Chemistry, Vol. 2092023 IEEE Radio and Antenna Days of the Indian Ocean (RADIO)GedionK.Kibet, ElijahMwangi, MichaelM.Mangala2023Deep learning‐based body weight from scout images can be an alternative to actual body weight in CT radiation dose managementShotaIchikawa, HidekiItadani, HiroyukiSugimori2023 | Journal of Applied Clinical Medical PhysicsSafety Considerations in MRI and CTRobert E.Watson, LifengYu2023 | CONTINUUM: Lifelong Learning in Neurology, Vol. 29, No. 1Dependence of Water-equivalent Diameter and Size-specific Dose Estimates on CT Tube PotentialCynthia H. McCollough, Shannon L. McCollough, Justine J. Schneider, Taylor R. Moen, Jayse M. Weaver, Thomas J. Vrieze, Lifeng Yu, Shuai Leng, 18 January 2022 | Radiology, Vol. 303, No. 2A comprehensive Monte Carlo study of CT dose metrics proposed by the AAPM Reports 111 and 200Paulo R.Costa, Denise Y.Nersissian, Nancy K.Umisedo, Alejandro H. L.Gonzales, José M.Fernández‐Varea2022 | Medical Physics, Vol. 49, No. 1Real‐time estimation of patient‐specific dose distributions for medical CT using the deep dose estimationJoschaMaier, LauraKlein, EliasEulig, StefanSawall, MarcKachelrieß2022 | Medical Physics, Vol. 49, No. 4Size-Specific Dose Estimates for Thoracic and Abdominal Computed Tomography Examinations at Two Moroccan HospitalsM’hamedEl Mansouri, AbdelmajidChoukri, SlimaneSemghouli, MohammedTalbi, KhalidaEddaoui, ZouhirSaga2022 | Journal of Digital Imaging, Vol. 35, No. 6SIZE-specific dose estimate for lower-limb CTMasanaoKobayashi, YuseiNishihara, TomonobuHaba, YutaMatsunaga, YasukiAsada, ShigekiKobayashi2022 | Physical and Engineering Sciences in Medicine, Vol. 45, No. 4Novel method of attenuation-based estimating patient size from single CT localizer radiographChang-LaeLee, KwanheeHan, MinkookCho2022 | Journal of the Korean Physical Society, Vol. 81, No. 5Quality assurance of dose management systemsEleni TheanoSamara, NikiFitousi, HildeBosmans2022 | Physica Medica, Vol. 99Patient size as a parameter for determining Diagnostic Reference Levels for paediatric Computed Tomography (CT) proceduresDumindaSatharasinghe, JeyasingamJeyasugiththan, W.M.N.M.B.Wanninayake, A.S.Pallewatte, R.A.N.K.K.Samarasinghe2022 | Physica Medica, Vol. 102Deep Learning-based calculation of patient size and attenuation surrogates from localizer Image: Toward personalized chest CT protocol optimizationYazdanSalimi, IsaacShiri, AzadehAkhavanallaf, ZahraMansouri, AmirHoseinSanaat, MasoumehPakbin, MohammadrezaGhasemian, HosseinArabi, HabibZaidi2022 | European Journal of Radiology, Vol. 157CAN THE SIZE-SPECIFIC DOSE ESTIMATE BE DERIVED FROM THE BODY MASS INDEX? A FEASIBILITY STUDYBeatriceSteiniger, ChrisKlippel, UlfTeichgräber, Jürgen RReichenbach, MartinFiebich2022 | Radiation Protection Dosimetry, Vol. 198, No. 6ESTIMATION OF PEDIATRIC DOSE DESCRIPTORS ADAPTED TO INDIVIDUAL SPECIFIC SIZE FROM CT EXAMINATIONSMuhammad KabirAbdulkadir, Ibrahim LutfiShuaib, AnushaAchuthan, Radin ANasirudin, Ahmad Hadif ZaidinSamsudin, Noor DiyanaOsman2022 | Radiation Protection Dosimetry, Vol. 198, No. 17Automated Estimation of Patient’s Size Using Autowed Tool and Indosect Program: A Dosimetric Study for Paediatric Head CT ExaminationsMohammed KSaeed, Hassan AAlshamrani, AbdelmoneimSulieman, Youssef MAbdullah, MohamedYousef, Ali S A MAli, Khalaf AAlshamrani2022 | Radiation Protection DosimetryFeasibility of low‐dose CT protocols for evaluating the sinonasal cavity and reducing radiation exposure in dogsSuhyunLee, Seo‐LynJang, SoyeonKim, JuryeongLee, SeongjaeHyeong, JihyeChoi2022 | Veterinary Radiology & Ultrasound, Vol. 63, No. 4Correlation between X-ray tube current exposure time and X-ray photon number in GATEIgnacio O.Romero, YileFang, ChangqingLi2022 | Journal of X-Ray Science and Technology, Vol. 30, No. 4Real-time fully automated dosimetric computation for CT images in the clinical workflow: A feasibility studyMassimilianoPorzio, ChoirulAnam2022 | Frontiers in Oncology, Vol. 12Radiation Dose Optimization Based on Saudi National Diagnostic Reference Levels and Effective Dose Calculation for Computed Tomography Imaging: A Unicentral Cohort StudyAbdullah YousefAl-Othman, Abdulaziz MohammadAl-Sharydah, Elfatih IbrahimAbuelhia, RafatMohtasib, AbdulmajeedBin Dahmash, Tarek MohammedHegazi, Abdulrahman AminTajaldeen, Sultan SalmanAlshehri, Fahad MabrukAl-Malki, SalemAlghamdi2022 | Applied Sciences, Vol. 12, No. 22Comparison of Water-Equivalent Diameter Measured from CT Localizer Radiograph Based on Two phantoms of the Step-Wedge and Computed Tomography Dose IndexSitti M. Rif’ah, Choirul Anam, Heri Sutanto, Heryani Cholid2022 | International Journal of Scientific Research in Science and TechnologyThe influence of patient positioning on radiation dose in CT imaging: A narrative reviewYazanAl-Hayek, XiaomingZheng, ChristopherHayre, KellySpuur2022 | Journal of Medical Imaging and Radiation Sciences, Vol. 53, No. 4A Comparison of CT-Guided Bone Biopsy and Fluoroscopic-Guided Disc Aspiration as Diagnostic Methods in the Management of SpondylodiscitisShahjehanAhmad, Miral D.Jhaveri, MahmudMossa-Basha, MuratOztek, JasonHartman, SanthoshGaddikeri2022 | Current Problems in Diagnostic Radiology, Vol. 51, No. 5Patient dose audit in common CT examinationsChristos P.Dimitroukas, Vasileios I.Metaxas, Fotios O.Efthymiou, Christina P.Kalogeropoulou, Petros E.Zampakis, George S.Panayiotakis2022 | Radiation Physics and Chemistry, Vol. 192An improved method for automated calculation of the water‐equivalent diameter for estimating size‐specific dose in CTChoirulAnam, Fahmi RosydiansyahMahdani, Winda KusumaDewi, HeriSutanto, PandjiTriadyaksa, FreddyHaryanto, GeoffDougherty2021 | Journal of Applied Clinical Medical Physics, Vol. 22, No. 9Evaluating Size‐Specific Dose Estimate (SSDE) as an estimate of organ doses from routine CT exams derived from Monte Carlo simulationsAnthony JamesHardy, MaryamBostani, Grace Hyun J.Kim, Christopher H.Cagnon, Maria AgnesZankl, MichaelMcNitt‐Gray2021 | Medical Physics, Vol. 48, No. 10Validation of a deterministic linear Boltzmann transport equation solver for rapid CT dose computation using physical dose measurements in pediatric phantomsSaraPrincipi, YonggangLu, YuLiu, AdamWang, AlexMaslowski, ToddWareing, JohnVan Heteren, Taly GilatSchmidt2021 | Medical Physics, Vol. 48, No. 12Radiation exposure of computed tomography imaging for the assessment of acute strokeSebastianZensen, NikaGuberina, MarcelOpitz, MartinKöhrmann, CorneliusDeuschl, MichaelForsting, AxelWetter, DeniseBos2021 | Neuroradiology, Vol. 63, No. 4Meeting ACR Dose Guidelines for CT Lung Cancer Screening in an Overweight and Obese PopulationRobertPeng, EdwardMardakhaev, AnnaShmukler, Jeffrey M.Levsky, Linda B.Haramati2021 | Academic Radiology, Vol. 28, No. 3Assessment of organ doses for CT patients based on x-ray attenuation using water equivalent diameterAbdullahAbuhaimed, Colin J.Martin2021 | Radiation Physics and Chemistry, Vol. 181Direct measurement of radiation exposure dose to individual organs during diagnostic computed tomography examinationKazutaYamashita, KosakuHigashino, HiroakiHayashi, KazukiTakegami, FumioHayashi, YoshihiroTsuruo, KoichiSairyo2021 | Scientific Reports, Vol. 11, No. 1Simplified approach to estimation of organ absorbed doses for patients undergoing abdomen and pelvis CT examinationSSookpeng, C JMartin, M RLópez-González2021 | Journal of Radiological Protection, Vol. 41, No. 4ESTABLISHING LOCAL DIAGNOSTIC REFERENCE LEVELS FOR ROUTINE COMPUTED TOMOGRAPHY EXAMINATIONS IN JIMMA UNIVERSITY MEDICAL CENTER SOUTH WEST ETHIOPIAMesfinZewdu, EliasKadir, MillionTesfaye, MelkamuBerhane2021 | Radiation Protection Dosimetry, Vol. 193, No. 3-4MEASUREMENT OF RADIATION DOSE TO THE EYE LENS IN NON-ENHANCED CT SCANS OF THE BRAINReemAlwasiah, AbdulkarimJawhari, Rafal AlOrri, MawyaKhafaji, SarahAl Bahiti2021 | Radiation Protection Dosimetry, Vol. 195, No. 1CORRELATION BETWEEN ANTERIOR–POSTERIOR AND LATERAL DIMENSIONS WITH THE EFFECTIVE AND WATER-EQUIVALENT DIAMETERS IN AXIAL IMAGES FROM HEAD COMPUTED TOMOGRAPHY EXAMINATIONSWinda KusumaDewi, ChoirulAnam, EkoHidayanto, Annisa LidiaWati, GeoffDougherty2021 | Radiation Protection Dosimetry, Vol. 196, No. 3-4SIMPLE METHOD OF MEASURING SSDE FOR HEAD CT: FACILITATING PRE-CT SCAN DOSE CALCULATION USING SPECIALIZED HEAD SCAN BANDTomokazuShohji, KazukiKuriyama, NobutakaYanano, ErikoMaeda, YoKatoh2021 | Radiation Protection Dosimetry, Vol. 197, No. 1PATIENT-SPECIFIC ORGAN DOSE EVALUATION BASED ON MONTE CARLO SIMULATION AND DOSE METRICS IN PAEDIATRIC CHEST–ABDOMEN–PELVIS CT EXAMINATIONSKeisukeFujii, KeiichiNomura, YoshihisaMuramatsu, HiroyukiOta2021 | Radiation Protection Dosimetry, Vol. 197, No. 1Organ Dose Estimation for Adult Chest CT Examination Using GATE Monte Carlo SimulationM.Tahiri, M.Mkimel, Y.Benameur, R.El Baydaoui, M. R.Mesradi, O.El Rhazouani2021 | Physics of Particles and Nuclei Letters, Vol. 18, No. 4Size-specific dose estimates of adult, chest computed tomography examinations: Comparison of Chinese and updated 2017 American College of Radiology diagnostic reference levels based on the water-equivalent diameterXiaoyanHu, JieGou, WeiLin, ChunhuaZou, WenboLi, MarcoGiannelli2021 | PLOS ONE, Vol. 16, No. 9Effect of Contrast Agent Administration on Size-Specific Dose Estimates (SSDE) Calculations based on Water Equivalent Diameter in CT Head ExaminationsMoh. Shofi NurUtami, HeriSutanto, ChoirulAnam, Muharam BudiLaksono2021 | International Journal of Scientific Research in Science and TechnologyDose Estimation by Geant4-Based Simulations for Cone-Beam CT Applications: A Systematic ReviewAna M.Cabanas, MauricioArriagada-Benítez, CarlosUbeda, OliverMeseguer-Ruiz, PedroArce2021 | Applied Sciences, Vol. 11, No. 13Dosimetric Evaluation in Micro-CT Studies Used in Preclinical Molecular ImagingAlexis N.Rueda, CésarRuiz-Trejo, EduardoLópez-Pineda, Mario E.Romero-Piña, Luis A.Medina2021 | Applied Sciences, Vol. 11, No. 17Estimating Specific Patient Organ Dose for Chest CT Examinations with Monte Carlo MethodYangYang, WeihaiZhuo, YiyangZhao, TianwuXie, ChuyanWang, HaikuanLiu2021 | Applied Sciences, Vol. 11, No. 19Single- and Dual-Source CT Myelography: Comparison of Radiation Exposure and Establishment of Diagnostic Reference LevelsSebastianZensen, DeniseBos, MarcelOpitz, MichaelForsting, NikaGuberina, CorneliusDeuschl, AxelWetter2021 | Diagnostics, Vol. 11, No. 104. Phantoms for Dose Evaluation in Computed TomographyKosukeMatsubara2021 | Japanese Journal of Radiological Technology, Vol. 77, No. 4Patient-level dose monitoring in computed tomography: tracking cumulative dose from multiple multi-sequence exams with tube current modulation in childrenAzadehTabari, XinhuaLi, KaiYang, BobLiu, Michael S.Gee, Sjirk J.Westra2021 | Pediatric Radiology, Vol. 51, No. 13Evaluation of age-based radiation dose in paediatric patients received from head CT examination at a tertiary hospital, NigeriaMuhammad KabirAbdulkadir, Iliyasu YusufIzge, Garba HarunaYunusa, AbachaMohammed, Noor DiyanaOsman2021 | Radiation Physics and Chemistry, Vol. 182Radiation doses and size-specific dose estimate from CT brain examinations according to head sizes in a tertiary hospital in MalaysiaZunaideKayun, Muhammad KhalisAbdul Karim, Hanif HaspiHarun, Abdul HalimShaari, RoziMahmud, Hamzaini AbdulHamid, AkmalSabarudin, Ming TsueyChew2021 | Radiation Physics and Chemistry, Vol. 189The effective and water-equivalent diameters as geometrical size functions for estimating CT dose in the thoracic, abdominal, and pelvic regionsWinda KusumaDewi, ChoirulAnam, EkoHidayanto, ArrumNitasari, GeoffDougherty2021 | Polish Journal of Medical Physics and Engineering, Vol. 27, No. 3Method of determining geometric patient size surrogates using localizer images in CTChristiane S.Burton2020 | Journal of Applied Clinical Medical Physics, Vol. 21, No. 3Estimating patient water equivalent diameter from CT localizer images – A longitudinal and multi‐institutional study of the stability of calibration parametersDaZhang, XinmingLiu, XinhuiDuan, Alexander A.Bankier, JohnRong, Matthew R.Palmer2020 | Medical Physics, Vol. 47, No. 5Deterministic linear Boltzmann transport equation solver for patient‐specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient modelsSaraPrincipi, AdamWang, AlexanderMaslowski, ToddWareing, PetrJordan, Taly GilatSchmidt2020 | Medical Physics, Vol. 47, No. 12Accuracy of weighted CTDI in estimating average dose delivered to CTDI phantoms: An experimental studyKevinTreb, KeLi2020 | Medical Physics, Vol. 47, No. 12Computed TomographyAipingDing, FrancescoRia, EhsanSamei2020Ultra-low-dose CT for extremities in an acute setting: initial experience with 203 subjectsZlatanAlagic, RobertBujila, AndersEnocson, SubhashSrivastava, Seppo K.Koskinen2020 | Skeletal Radiology, Vol. 49, No. 4DNA double-strand breaks of human peripheral blood lymphocyte induced by CT examination of oral and maxillofacial regionPanYang, ShuoWang, DenggaoLiu, HuaZhao, GangLi2020 | Clinical Oral Investigations, Vol. 24, No. 12In vivo radiation dosimetry and image quality of turbo-flash and retrospective dual-source CT coronary angiographyNicolòSchicchi, AlbertoMari, MarcoFogante, PaoloEsposto Pirani, GiacomoAgliata, NiccolòTosi, PierpaoloPalumbo, EsterCannizzaro, FedericoBruno, AlessandraSplendiani, ErnestoDi Cesare, StefaniaMaggi, AndreaGiovagnoni2020 | La radiologia medica, Vol. 125, No. 2Size-specific dose estimates for various weighting factors of CTDI equationTomonobuHaba, MasanaoKobayashi, ShujiKoyama2020 | Physical and Engineering Sciences in Medicine, Vol. 43, No. 1Effect of table height displacement and patient center deviation on size-specific dose estimates calculated from computed tomography localizer radiographsKazukiKuriyama, KosukeMatsubara, ShuHisahara, YukieNagata, RumikoNosaka, RikaGoto, NobutakaYanano, KanichiroShimizu, TomokazuShoji2020 | Physical and Engineering Sciences in Medicine, Vol. 43, No. 2Radiation dose monitoring in computed tomography: Status, options and limitationsIoannis A.Tsalafoutas, MohammadHassan Kharita, HudaAl-Naemi, Mannudeep K.Kalra2020 | Physica Medica, Vol. 79Impact of active dose management on radiation exposure and image quality in computed tomography: An observational study in 1315 patientsGesa H.Poehler, BabakAlikhani, FilipKlimes, Erik F.Hauck, Kristina I.Ringe, LenaSonnow, FrankWacker, Hans-JürgenRaatschen2020 | European Journal of Radiology, Vol. 125Potential biological damage of human peripheral blood lymphocytes i
Referência(s)