Using stable isotopes to investigate the dietary trophic level of fledgling songbirds
2012; Association of Field Ornithologists; Volume: 83; Issue: 1 Linguagem: Inglês
10.1111/j.1557-9263.2011.00357.x
ISSN1557-9263
AutoresAndrew C. Vitz, Amanda D. Rodewald,
Tópico(s)Marine animal studies overview
ResumoJournal of Field OrnithologyVolume 83, Issue 1 p. 73-84 Using stable isotopes to investigate the dietary trophic level of fledgling songbirds Uso de isotopos estables para investigar los niveles tróficos en la dienta de juveniles de aves paseriformes Andrew C. Vitz, Corresponding Author Andrew C. Vitz School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43202, USA Current address: Carnegie Museum of Natural History – Powdermill Avian Research Center, 1847 State Route 381, Rector, Pennsylvania 15677, USA. Corresponding author. Email: [email protected]Search for more papers by this authorAmanda D. Rodewald, Amanda D. Rodewald School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43202, USASearch for more papers by this author Andrew C. Vitz, Corresponding Author Andrew C. Vitz School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43202, USA Current address: Carnegie Museum of Natural History – Powdermill Avian Research Center, 1847 State Route 381, Rector, Pennsylvania 15677, USA. Corresponding author. Email: [email protected]Search for more papers by this authorAmanda D. Rodewald, Amanda D. Rodewald School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43202, USASearch for more papers by this author First published: 27 February 2012 https://doi.org/10.1111/j.1557-9263.2011.00357.xCitations: 9 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten ABSTRACT Use of early successional habitat by mature forest birds during the postfledging period is well documented, but reasons for this habitat shift remain elusive. Although forest-breeding songbirds are primarily insectivorous during the nestling and early fledgling periods due to high protein requirements, older fledglings may adopt a heavily frugivorous diet. Our objectives were to use stable isotopes to examine the dietary trophic level of juveniles of three species of mature forest songbirds to determine if juvenile songbirds heavily consume fruit resources during the postfledging period and to evaluate a possible link between diet and energetic condition. We collected the outer right rectrix and several body feathers from 34 Wood Thrushes (Hylocichla mustelina), 34 Ovenbirds (Seiurus aurocapilla), and 35 Scarlet Tanagers (Piranga olivacea) captured in regenerating clearcuts in southeastern Ohio in 2005 and 2006. We also collected fruit and arthropod samples from each clearcut. Isotopic values of body feathers were significantly higher (more enriched) than those of rectrices in all cases except values of δ13C for Ovenbirds where we found no difference between body and rectrix feathers. These results suggest that juvenile songbirds did not undergo a strong shift to frugivory during the postfledging period, and arthropods were the primary source of protein during the period when rectrix and body feathers were growing. In addition, the energetic condition of birds was not related to the isotopic signature of feathers. Although our results are inconsistent with the hypothesis that juveniles move into regenerating clearcuts enabling them to shift to a primarily frugivorous diet during the postfledging period, they may consume fruit for nonprotein requirements, such as lipids and carbohydrates. RESUMENes El uso de hábitats de sucesión temprana por aves de bosque maduro durante los periodos después de dejar el nido está bien documentado, pero las razones del porque de este cambio de hábitat son todavía un misterio. A pesar de que las aves paseriformes de bosque son principalmente insectívoras durante el periodo de polluelos y etapas tempranas después del abandono del nido debido a los altos requerimientos de proteína, juveniles más viejos pueden adoptar una dieta mayormente frugívora. Nuestro objetivo fue usar isotopos estables para examinar los niveles tróficos de la dieta de juveniles de tres especies de aves paseriformes de bosque maduro, para determinar si los juveniles de aves paseriformes consumen mayormente frutos durante el periodo después de abandonar el nido y evaluar una posible conexión entre la dieta y condición energética. Colectamos la rectriz mas externa del lado derecho y varias plumas corporales de 34 Hylocichla mustelina, 34 Seiurus aurocapilla y 35 Piranga olivacea capturadas en áreas deforestadas en regeneración en el sureste de Ohio en el 2005 y 2006. También colectamos muestras de frutas y artrópodos en cada área deforestada. Los valores isotópicos de las plumas del cuerpo fueron significativamente más altos (más enriquecidos) que los de las rectrices en todos los casos exceptuando los valores de δ13C para S. aurocapilla en donde no encontramos diferencias entre las plumas del cuerpo y las rectrices. Estos resultados sugieren que los juveniles de aves paseriformes no experimentan un cambio fuerte a frugívora durante el periodo después de dejar el nido y que los artrópodos fueron el principal recurso de proteína durante el periodo cuando las rectrices y las plumas del cuerpo estaban creciendo. Adicionalmente, la condición energética de las aves no estuvo relacionada con los valores isotópicos de las plumas. A pesar de que nuestro resultado es inconsistente con la hipótesis de que los juveniles se mueven hacia las zonas desforestadas en regeneración permitiéndoles cambiar hacia una dieta principalmente frugívora durante el periodo después de abandonar el nido, ellos puedes estar consumiendo frutos para suplir requerimientos no proteicos, como lípidos y carbohidratos. LITERATURE CITED Anders, A. D., D. C. Dearborn, J. Faaborg, and F. R. Thompson. 1997. Juvenile survival in a population of Neotropical migrant birds. Conservation Biology 11: 698–707. Anders, A. D., D. C. Dearborn, J. Faaborg, and F. R. Thompson, J. Faaborg, and F. R. Thompson, III. 1998. Postfledging dispersal, habitat use, and home-range size of juvenile Wood Thrushes. Auk 115: 349–358. Bearhop, S., S. Waldron, S. C. Votier, and R. W. Furness. 2002. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiological and Biochemical Zoology 75: 451–458. Breitwisch, R., M. Diaz, and R. Lee. 1987. Foraging efficiencies and techniques of juvenile and adult Northern Mockingbirds (Mimus polyglottos). Behaviour 101: 225–235. Burke, D. M., and E. Nol. 1998. Influence of food abundance, nest-site habitat, and forest fragmentation on breeding Ovenbirds. Auk 115: 96–104. Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53: 209–233. Desrochers, A. 1992. Age and foraging success in European Blackbirds – variation between and within individuals. Animal Behaviour 43: 885–894. Farji-Brener, A. G. 2001. Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis. Oikos 92: 169–177. Forsman, J. T., M. Monkkonen, P. Helle, and J. Inkeroinen. 1998. Heterospecific attraction and food resources in migrants' breeding patch selection in northern boreal forest. Oecologia 115: 278–286. Gagnon, C., and K. A. Hobson. 2009. Using stable isotopes to track frugivory in migratory passerines. Canadian Journal of Zoology 87: 981–992. Goodbred, C. O., and R. T. Holmes. 1996. Factor affecting food provisioning of nestling Black-throated Blue Warblers. Wilson Bulletin 108: 467–479. Graves, G. R., C. S. Romanek, and A. R. Navarro. 2002. Stable isotope signature of philopatry and dispersal in a migratory songbird. Proceedings of the National Academy of Sciences USA 99: 8096–8100. Green, A. J. 2001. Mass/length residuals: measures of body condition or generators of spurious results Ecology 82: 1473–1483. Herrera, L. G., K. A. Hobson, M. Rodriguez, and P. Hernandez. 2003. Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis. Oecologia 136: 439–444. Hobson, K. 1999. Stable-carbon and nitrogen isotope ratios of songbird feathers grown in two terrestrial biomes: implications for evaluating trophic relationships and breeding origins. Condor 101: 799–805. Hobson, K. A., and F. Bairlein. 2003. Isotopic fractionation and turnover in captive Garden Warblers (Sylvia borin): implications for delineating dietary and migratory associations in wild passerines. Canadian Journal of Zoology 81: 1630–1635. Hooge P. N., and B. Eichenlaub. 2000. Animal movement extension to Arcview, ver. 2.0. Alaska Science Center – Biological Science Office, U.S. Geological Survey, Anchorage , AK . Husby, M., and T. Slagsvold. 1992. Postfledging behavior and survival in male and female magpies Pica pica. Ornis Scandinavica 23: 483–490. Inger, R., and S. Bearhop. 2008. Applications of stable isotope analyses to avian ecology. Ibis 150: 447–461. Johnson, M. D. 2000. Evaluation of an arthropod sampling technique for measuring food availability for forest insectivorous birds. Journal of Field Ornithology 71: 88–109. Johnson, M. D., and T. W. Sherry. 2001. Effects of food availability on the distribution of migratory warblers among habitats in Jamaica. Journal of Animal Ecology 70: 546–560. Jokimäki, J., E. Huhta, J. Itämies, and P. Rahko. 1998. Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Canadian Journal of Forest Research 28: 1068–1072. Keller, J. K., M. E. Richmond, and C. R. Smith. 2003. An explanation of patterns of breeding bird species richness and density following clearcutting in northeastern USA forests. Forest Ecology and Management 174: 541–564. Kelly, J. F. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78: 1–27. Lajtha, K., and J. D. Marshall. 1994. Sources of variation in the stable isotopic composition of plants. In: Stable isotopes in ecology and environmental science ( K. Lajtha and R. H. Michener, eds.), pp. 1–21. Blackwell Scientific, London , UK . Long, J. A., and P. C. Stouffer. 2003. Diet and preparation for spring migration in captive Hermit Thrushes (Catharus guttatus). Auk 120: 323–330. Marra, P. P., K. A. Hobson, and R. T. Holmes. 1998. Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282: 1884–1886. Marshall, M. R., J. A. DeCecco, A. B. Williams, G. A. Gale, and R. J. Cooper. 2003. Use of regenerating clearcuts by late-successional bird species and their young during the post-fledging period. Forest Ecology and Management 183: 127–135. Martin, A. C. 1951. American wildlife and plants, a guide to wildlife food habits: the use of trees, shrubs, weeds, and herbs by birds and mammals of the United States. McGraw-Hill, New York , NY . McCarty, J. P., D. J. Levey, C. H. Greenberg, and S. Sargent. 2002. Spatial and temporal variation in fruit use by wildlife in a forested landscape. Forest Ecology and Management 164: 277–291. Murphy, M. E. 1996. Energetics and nutrition of molt. In: Avian energetics and nutritional ecology ( C. Carey, ed.), pp. 158–198. Chapman and Hall, New York , NY . Naef-Daenzer, B., and L. F. Keller. 1999. The foraging performance of Great and Blue tits (Parus major and P. caerulens) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. Journal of Animal Ecology 68: 708–718. Parrish, J. D. 1997. Patterns of frugivory and energetic condition in Nearctic landbirds during autumn migration. Condor 99: 681–697. Parrish, J. D.. 2000. Behavioral, energetic, and conservation implications of foraging plasticity during migration. Studies in Avian Biology 20: 53–70. Pearson, S. F., D. J. Levey, C. H. Greenberg, and C. M. Del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135: 516–523. Podlesak, D. W., S. R. McWilliams, and K. A. Hatch. 2005. Stable isotopes in breath, blood, feces and feathers can indicate intra-individual changes in the diet of migratory songbirds. Oecologia 142: 501–510. Robbins, C. T., L. A. Felicetti, and S. T. Florin. 2010. The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation. Oecologia 162: 571–579. Rodenhouse, N. L., and R. T. Holmes. 1992. Results of experimental and natural food reductions for breeding Black-throated Blue Warblers. Ecology 73: 357–372. SAS Institute. 1990. SASSTAT user's guide. SAS Institute, Cary , NC . Stevens, J. 1985. Foraging success of adult and juvenile Starlings Sturnus vulgaris: a tentative explanation for the preference of juveniles for cherries. Ibis 127: 341–347. Stiles, E. W. 1980. Patterns of fruit presentation and seed dispersal in bird-disseminated woody-plants in the eastern deciduous forest. American Naturalist 116: 670–688. Sullivan, K. A. 1989. Predation and starvation – age-specific mortality in juvenile juncos (Junco phaenotus). Journal of Animal Ecology 58: 275–286. Trueman, C. N., R. A. R. McGill, and P. H. Guyard. 2005. The effect of growth rate on tissue-diet isotopic spacing in rapidly growing animals. An experimental study with Atlantic salmon (Salmo salar). Rapid Communications in Mass Spectrometry 19: 3239–3247. Van Horn, M. A., and T. M. Donovan. 1994. Ovenbird (Seiurus aurocapilla). In: The birds of North America online ( A. Poole, ed.). Cornell Lab of Ornithology, Ithaca , NY . VanderWerf, E. A. 1994. Intraspecific variation in Elepaio foraging behavior in Hawaiian forests of different structure. Auk 111: 917–932. Vega Rivera, J. H., J. H. Rappole, W. J. McShea, and C. A. Haas. 1998. Wood Thrush postfledging movements and habitat use in northern Virginia. Condor 100: 69–78. Vitz, A. C., 2008. Post-fledging survivorship, habitat use, and movements for two species of mature forest birds. Ph.D. dissertation. The Ohio State University, Columbus , OH . Vitz, A. C., and A. D. Rodewald. 2006. Can regenerating clearcuts benefit mature-forest songbirds? An examination of post-breeding ecology. Biological Conservation 127: 477–486. A. D. Rodewald, and A. D. Rodewald. 2007. Vegetative and fruit resources as determinants of habitat use by mature-forest birds during the postbreeding period. Auk 124: 494–507. A. D. Rodewald, and A. D. Rodewald. 2011. Influence of condition and habitat use on survival of post-fledging songbirds. Condor 113: 400–411. Wagner, D. L. 2005. Caterpillars of eastern North America. Princeton University Press, Princeton , NJ . White, J. D., T. Gardali, F. R. Thompson, and J. Faaborg. 2005. Resource selection by juvenile Swainson's Thrushes during the postfledging period. Condor 107: 388–401. Willson, M. F. 1986. Avian fruigivory and seed dispersal in eastern North America. Current Ornithology 3: 223–279. Wolf, N., S. A. Carleton, and C. Martinez del Rio. 2009. Ten years of experimental animal isotopic ecology. Functional Ecology 23: 17–26. Wunderle, J. M., Jr. 1991. Age-specific foraging proficiency in birds. Current Ornithology 8: 273–324. Zanette, L., P. Doyle, and S. M. Tremont. 2000. Food shortage in small fragments: evidence from an area-sensitive passerine. Ecology 81: 1654–1666. Citing Literature Volume83, Issue1February 2012Pages 73-84 ReferencesRelatedInformation
Referência(s)