Hydrogen-bonded supramolecular polymer networks
1999; Wiley; Volume: 37; Issue: 19 Linguagem: Inglês
10.1002/(sici)1099-0518(19991001)37
ISSN1099-0518
AutoresRonald F. M. Lange, M. van Gurp, E. W. Meijer,
Tópico(s)Advanced Polymer Synthesis and Characterization
ResumoJournal of Polymer Science Part A: Polymer ChemistryVolume 37, Issue 19 p. 3657-3670 Article Hydrogen-bonded supramolecular polymer networks Ronald F. M. Lange, Ronald F. M. Lange DSM Research, P.O. Box 18, 6160 MD Geleen, The Netherlands Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsSearch for more papers by this authorM. Van Gurp, M. Van Gurp DSM Research, P.O. Box 18, 6160 MD Geleen, The NetherlandsSearch for more papers by this authorE. W. Meijer, Corresponding Author E. W. Meijer [email protected] Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsLaboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsSearch for more papers by this author Ronald F. M. Lange, Ronald F. M. Lange DSM Research, P.O. Box 18, 6160 MD Geleen, The Netherlands Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsSearch for more papers by this authorM. Van Gurp, M. Van Gurp DSM Research, P.O. Box 18, 6160 MD Geleen, The NetherlandsSearch for more papers by this authorE. W. Meijer, Corresponding Author E. W. Meijer [email protected] Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsLaboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsSearch for more papers by this author First published: 21 January 2000 https://doi.org/10.1002/(SICI)1099-0518(19991001)37:19 3.0.CO;2-6Citations: 217AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The strong dimerizing, quadruple hydrogen-bonding ureido-pyrimidone unit is used to obtain reversible polymer networks. A new synthetic route from commercially available starting materials is described. The hydrogen-bonding ureido-pyrimidone network is prepared using 3(4)-isocyanatomethyl-1-methylcyclohexyl-isocyanate (IMCI) in the regioselective coupling reaction of multi-hydroxy functionalized polymers with isocytosines. 1H- and 13C-NMR, IR, MS, and ES-MS analysis, performed on a model reaction using butanol, demonstrated the formation of the hydrogen-bonding ureido-pyrimidone unit in a yield of more than 95%. The well-defined, strong hydrogen-bonding ureido-pyrimidone network is compared with a traditional covalently bonded polymer network, a multi-directional hydrogen-bonded polymer network based on urea units, and a reference compound. The advantage of the reversible, hydrogen-bonded polymer networks is the formation of the thermodynamically most favorable products, which show a higher "virtual" molecular weight and shear modulus, compared to the irreversible, covalently bonded polymer network. The properties of the ureido-pyrimidone network are unique; the well-defined and strong dimerization of the ureido-pyrimidone unit does not require any additional stabilization such as crystallization or other kinds of phase separation, and displays a well-defined viscoelastic transition. The ureido-pyrimidone network represents the first example of a truly reversible polymer network showing these features. Furthermore, the ureido-pyrimidone dimerization is strong enough to construct supramolecular materials possessing acceptable mechanical properties. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3657–3670, 1999 REFERENCES AND NOTES 1 a) Billmeyer, Jr., F. W. Textbook S of Polymercience, 3rd ed.; Wiley Interscience: New York, 1984; b) Odian, G. Principles of Polymerization, 2nd ed.; Wiley Interscience: New York, 1981. 2 a) Engle, L. P.; Wagener, K. B. JMS Rev Macromol Chem Phys 1933, C33, 239; b) Joel, D.; Hauser, A. Angew Makromol Chem 1994, 217, 190; c) Wagener, K. B.; Murla, M. A. Pol Preprints 1989, 30, 287. 3 a) Legge, N. R.; Holden, G.; Schroeder, H. E. Thermoplastic Elastomers, A Comprehensive Review; Hanser: New York, 1987; b) Olabisi, O. Handbook of Thermoplastic Elastomers, Marcel Dekker: New York, 1997; c) Dieterich, D.; Uhlig, K. Ullmann's Encyclopedia of Industrial Chemistry, 5th ed.; 1992, Chapter A21, p 665. 4 a) Müller, M.; Dardin, A.; Seidel, U.; Balsamo, V.; Iván, B.; Spiess, H. W.; Stadler, R. Macromolecules, 1996, 29, 2577; b) Shirle, M.; Hoffmann, I.; Pieper, T.; Kilian, H.-G.; Stadler, R. Polym Bull 1996, 36, 95; c) Stadler, R.; Burgert, J. Makromol Chem 1986, 187, 1681; d) Hilger, C.; Stadler, R. Macromolecules 1990, 23, 2097; e) Hilger, C.; Stadler, R. Macromolecules 1992, 25, 6670; f) Dardin, A.; Stadler, R.; Boeffel, C.; Spiess, H. W. Makromol Chem 1993, 194, 3467; g) Hilger, C.; Dräger, M.; Stadler, R. Macromolecules 1992, 25, 2498; h) Schirle, M.; Beckmann, J.; Stadler, R. Angew Makromol Chem 1992, 202–203, 261; i) Hellmann, J.; Hilger, C.; Stadler, R. Polym Adv Tech 1994, 5, 76; j) Stadler, R.; Hellmann, J.; Schirle, M.; Beckmann, J. Polym Prep 1993, 34, 100. 5 a) Cowie, J. M. G. Encycl Polym Sci Eng Suppl Vol 1980, p 455; b) Coleman, M. C.; Graf, J. F.; Painter, P. C. Specific Interactions and the Miscibility of Polymer Blends; Technomic: Lancaster, 1991; c) Pearce, E. M.; Kwei, T. K.; Min, B. Y. J Macromol Sci Chem A 1984, 21, 1181; d) Yang, X.; Painter, P. C.; Coleman, M. C.; Pearce, E. M.; Kwei, T. K. Macromolecules 1992, 25, 2156; e) Smith, K. L.; Winslow, A. E.; Petersen, D. E. Ind Eng Chem 1951, 51, 1361; f) Aubin, M.; Voyer, R.; Prud'homme, R. E. Makromol Chem Rapid Commun 1982, 5, 419; g) Zhang, X.; Takegoshi, K.; Hikichi, K. Macromolecules 1991, 24, 5756; h) Bhagwagar, D. E.; Painter, P. C.; Coleman, M. C.; Krizan, T. D. J Polym Sci B, Polym Phys 1991, 29, 1547; i) Musto, P.; Karasz, F. E.; McKnight, W. J. Macromolecules 1991, 24, 4762; j) Janathanan, V.; Karasz, F. E.; McKnight, W. J. Polymer 1992, 33, 3388; k) Kato, T.; Kihara, H.; Kamar, U.; Uryu, T.; Fréchet, J. M. J. Angew Chem 1994, 106, 1728; Angew Chem Int Ed Engl 1994, 33, 1644; l) Kihara, H.; Kato, T.; Uryu, T.; Fréchet, J. M. J. Chem Mater 1996, 8, 961. 6 a) Lange, R. F. M.; Meijer, E. W. Macromolecules 1995, 28, 782; b) Lange, R. F. M.; Meijer, E. W. Macromol Symp 1996, 102, 301. 7 a) Beijer, F. H. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1998; b) Beijer, F. H.; Kooijman, H.; Spek, A. L.; Sijbesma, R. P.; Meijer, E. W. J Am Chem Soc 1998, 120, 6761; c) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science 1997, 278, 1601; d) Folmer, B. J. B.; Cavini, E.; Sijbesma, R. P.; Meijer, E. W. Chem Commun 1998, 1629; e) Folmer, B. J. B.; Sijbesma, R. P.; Meijer, E. W. Polym Preprints 1999, 80, 20. 8 a) Pranata, J.; Wierschke, S. G.; Jorgensen, W. L. J Am Chem Soc 1991, 113, 2810; b) Jorgensen, W. L. Comp Insights Intermol Int 1991, 91. 9 Kogon, I. C. J Org Chem 1959, 24, 438. 10 Ono, H. K.; Jones, F. K.; Pappas, S. P. J Polym Sci, Polym Lett 1985, 23, 509. 11 Laas, H. J.; Halpaap, R.; Pedain, J. Farbe und Lack, 1994, 100, 330. The isomer ratio as presented in Figure 5 of this publication is not 11 : 58 : 5 : 26 but should be 58 : 11 : 5 : 26; personal communication, R. Halpaap. 12 Laas, H. J.; Halpaap, R.; Pedain, J. J Prakt Chem 1994, 336, 185. 13 a) Sartorius, J.; Sneider, H.-J. Chem Eur J 1996, 2, 1446; b) Sneider, H.-J. Chem Soc Rev 1994, 23, 277. 14 The entanglement molecular weight (Me) is determined using the formula Me = ρ,R.T/Gd, where ρ is the density, R the gasconstant, and T the temperature. The density of the linear poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol), which is 1,020 Kg.m−3, is used as an estimate for the density of 2. 15 Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980. 16 Cates, M. E. Macromolecules 1987, 20, 2289. 17 DSM Research, Geleen, The Netherlands, Internal Report, 1991. 18 Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988. Citing Literature Volume37, Issue191 October 1999Pages 3657-3670 This article also appears in:75 Years of Seminal Journal of Polymer Science Papers ReferencesRelatedInformation
Referência(s)