INTRACLUSTER MEDIUM ENTROPY PROFILES FOR A CHANDRA ARCHIVAL SAMPLE OF GALAXY CLUSTERS
2009; Institute of Physics; Volume: 182; Issue: 1 Linguagem: Inglês
10.1088/0067-0049/182/1/12
ISSN1538-4365
AutoresK. W. Cavagnolo, Megan Donahue, G. Mark Voit, Ming Sun,
Tópico(s)Stellar, planetary, and galactic studies
ResumoWe present radial entropy profiles of the intracluster medium (ICM) for a collection of 239 clusters taken from the Chandra X-ray Observatory's Data Archive. Entropy is of great interest because it controls ICM global properties and records the thermal history of a cluster. Entropy is therefore a useful quantity for studying the effects of feedback on the cluster environment and investigating any breakdown of cluster self-similarity. We find that most ICM entropy profiles are well-fit by a model which is a power-law at large radii and approaches a constant value at small radii: K(r) = K0 + K100(r/100 kpc), where K0 quantifies the typical excess of core entropy above the best fitting power-law found at larger radii. We also show that the K0 distributions of both the full archival sample and the primary HIFLUGCS sample of Reiprich (2001) are bimodal with a distinct gap between K0 ~ 30 - 50 keV cm^2 and population peaks at K0 ~ 15 keV cm^2 and K0 ~ 150 keV cm^2. The effects of PSF smearing and angular resolution on best-fit K0 values are investigated using mock Chandra observations and degraded entropy profiles, respectively. We find that neither of these effects is sufficient to explain the entropy-profile flattening we measure at small radii. The influence of profile curvature and number of radial bins on best-fit K0 is also considered, and we find no indication K0 is significantly impacted by either. For completeness, we include previously unpublished optical spectroscopy of Halpha and [N II] emission lines discussed in Cavagnolo et al. (2008a). All data and results associated with this work are publicly available via the project web site.
Referência(s)