Artigo Revisado por pares

Shape and Phase Control of ZnS Nanocrystals: Template Fabrication of Wurtzite ZnS Single-Crystal Nanosheets and ZnO Flake-like Dendrites from a Lamellar Molecular Precursor ZnS·(NH2CH2CH2NH2)0.5

2002; Volume: 14; Issue: 4 Linguagem: Inglês

10.1002/1521-4095(20020219)14

ISSN

1521-4095

Autores

Shu‐Hong Yu, M. Yoshimura,

Tópico(s)

Perovskite Materials and Applications

Resumo

Advanced MaterialsVolume 14, Issue 4 p. 296-300 Communication Shape and Phase Control of ZnS Nanocrystals: Template Fabrication of Wurtzite ZnS Single-Crystal Nanosheets and ZnO Flake-like Dendrites from a Lamellar Molecular Precursor ZnS·(NH2CH2CH2NH2)0.5 S.-H. Yu, S.-H. Yu [email protected] Search for more papers by this authorM. Yoshimura, M. Yoshimura [email protected] Search for more papers by this author S.-H. Yu, S.-H. Yu [email protected] Search for more papers by this authorM. Yoshimura, M. Yoshimura [email protected] Search for more papers by this author First published: 19 February 2002 https://doi.org/10.1002/1521-4095(20020219)14:4 3.0.CO;2-6Citations: 382AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Unusual two-dimensional ZnS nanosheets with micrometer scale lateral dimensions and flake-like ZnO dendrites (see Figure) can be rapidly generated with high yield (>96 %) by using a simple template method. The molecular precursor ZnS·(NH2CH2CH2NH2)0.5, which shows a strong ultraviolet emission band centered at 380 nm at room temperature, lies at the basis of this method. REFERENCES 1 C.M. Lieber, Solid State Commun. 1998, 107, 607. 2a J.T. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 1999, 32, 435. 2b A.M. Morales, C.M. Lieber, Science 1998, 279, 208. 3a X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 2000, 404, 59. 3b Z.A. Peng, X.G. Peng, J. Am. Chem. Soc. 2001, 123, 1389. 4a L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 2000, 122, 12 700. 4b Z.A. Peng, X.G. Peng, J. Am. Chem. Soc. 2001, 123, 183. 5 A.P. Alivisatos, Science 1996, 271, 933. 6a J.D. Klein, R.D. Herrick, D. Palmer, M.J. Sailor, Chem. Mater. 1993, 5, 902. 6b C.R. Martin, Science 1993, 266, 1961. 6c D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu, J. Phys. Chem. 1996, 100, 14 037. 7 W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu, Science 1997, 277, 1287. 8a X.F. Duan, C.M. Lieber, Adv. Mater. 2000, 12, 298. 8b X.F. Duan, C.M. Lieber, J. Am. Chem. Soc. 2000, 122, 188. 8c M.S. Gudiksen, C.M. Lieber, J. Am. Chem. Soc. 2000, 122, 8801. 9 A. Stein, S.W. Keller, T.E. Mallouk, Science 1993, 259, 1558. 10 T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Science 1995, 270, 1791. 11 J.R. Heath, Science 1992, 258, 1131. 12 J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 2000, 287, 1471. 13a S.H. Yu, Y.S. Wu, J. Yang, Z.H. Han, Y. Xie, Y.T. Qian, X.M. Liu, Chem. Mater. 1998, 10, 2309. 13b J. Yang, J.H. Zeng, S.H. Yu, L. Yang, G.E. Zhou, Y.T. Qian, Chem. Mater. 2000, 12, 2924. 13c S.H. Yu, L. Shu, J. Yang, Z.H. Han, Y.T. Qian, Y.H. Zhang, J. Mater. Res. 1999, 14, 4157. 14a J. Tanori, T. Gulik, M.-P. Pileni, Langmuir 1997, 13, 632. 14b J. Tanori, M.-P. Pileni, Adv. Mater. 1995, 7, 862. 14c J. Tanori, M.-P. Pileni, Langmuir 1997, 13, 639. 14d M.-P. Pileni, B.W. Ninham, T. Gulik-Krzywicki, J. Tanori, I. Lisiecki, A. Filankembo, Adv. Mater. 1999, 11, 1358. 14e T.S. Ahmadi, Z. L Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Science 1996, 272, 1924. 14f C.P. Gibson, K. Putzer, Science 1995, 267, 1338. 14g S.-J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 2000, 122, 8581. 15a D.D. Archibald, S. Mann, Nature 1993, 364, 430. 15b M. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 393. 15c L.M. Qi, H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 2000, 39 604. 16 B. Skinner, Am. Mineral. 1960, 45, 612. 17 A.K. Verma, T.B. Rauchfuss, S.R. Wilson, Inorg. Chem. 1995, 34, 3072. 18 T. Sasaki, M. Watanabe, J. Phys. Chem. 1997, 101, 10 159. 19 N. Pinna, K. Weiss, J. Urban, M.-P. Pileni, Adv. Mater. 2001, 13, 261. 20a M.E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H.-U. Nissen, Angew. Chem. Int. Ed. 1998, 37, 1263. 20b F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper, J. Am. Chem. Soc. 1999, 121, 8324. 20c H.-J. Muhr, F. Krumeich, U.P. Schönholzer, F. Bieri, M. Niederberger, L.J. Gauckler, R. Nesper, Adv. Mater. 2000, 12, 231. 20d M. Niederberger, H.-J. Muhr, F. Krumeich, F. Bieri, D. Günther, R. Nesper, Chem. Mater. 2000, 12, 1995. 21 P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. Whelan, in Electron Microscopy of Thin Crystals (Ed: R. E. Krieger), Huntington, New York 1977, Ch. 5, p. 117. 22a M. Shinada, S. Sugano, J. Phys. Soc. Jpn. 1966, 21, 1936. 22b C.J. Sandroff, D.M. Hwang, W.M. Chung, Phys. Rev. B 1986, 33, 5953. 22c C.J. Sandroff, S.P. Kelty, D.M. Hwang, J. Chem. Phys. 1986, 85, 2237. 23 Y. Wang, N. Herron, J. Phys. Chem. 1991, 95, 5054. 24 In order to evaluate the average thickness of the nanosheets, the bandgap energy shift, ΔEg, by exciton confinement in anisotropic two-dimensional crystallites is formulated as [22]: (1) where h is Planck's constant, μxz, μy are the reduced effective mass of the exciton, and Lx, Ly, Lz are crystallite dimensions. Since Lx,Lz ≫ Ly for the nanosheet, the first term can be ignored, therefore the blue shift is predominantly governed by the sheet thickness: (2) The bandgap of ZnS nanosheets can be estimated by fitting the absorption data to the direct transition equation [23]: (3) where α is the absorption coefficient, hν is the photo-energy, Eg is the direct bandgap, and A is a constant. In the case of the ZnS nanosheet, the parameters for calculation are: Eg(bulk) = 3.80 eV, Eg = 5.08 eV, m= 0.42, m= 0.61, ΔEg = 1.16 eV, μy = 0.2487. The calculated thickness of ZnS nanosheets is about 11 Å. The nanosheet thickness is much smaller than the exciton Bohr radius aB = 22 Å for wurtzite ZnS. 25 S.A. Empedocles, R. Neuhauser, K. Shimizu, M.G. Bawendi, Adv. Mater. 1999, 15, 1243. Citing Literature Volume14, Issue4February, 2002Pages 296-300 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX