Generation and Characterization of Mutant Mice Lacking Ryanodine Receptor Type 3
1996; Elsevier BV; Volume: 271; Issue: 33 Linguagem: Inglês
10.1074/jbc.271.33.19649
ISSN1083-351X
AutoresHiroshi Takeshima, Takaaki Ikemoto, Miyuki Nishi, Nobuyoshi Nishiyama, Misa Shimuta, Yoshinobu Sugitani, Junko Kuno, Ichiro Saito, Hiroshi Saitō, Makoto Endo, Masamitsu Iino, Tetsuo Noda,
Tópico(s)Ion Channels and Receptors
ResumoThe ryanodine receptor type 3 (RyR-3) functions as a Ca2+-induced Ca2+ release (CICR) channel and is distributed in a wide variety of cell types including skeletal muscle and smooth muscle cells, neurons, and certain non-excitable cells. However, the physiological roles of RyR-3 are totally unclear. To gain an insight into the function of RyR-3 in vivo, we have generated mice lacking RyR-3 by means of the gene targeting technique. The mutant mice thus obtained showed apparently normal growth and reproduction. Although Ca2+-induced Ca2+ release from intracellular Ca2+ stores of the mutant skeletal muscle differed in Ca2+ sensitivity from that of wild-type muscle, excitation-contraction coupling of the mutant muscle seemed to be normal. Moreover, we could not find any significant disturbance in the smooth muscle and lymphocytes from the mutant mice. On the other hand, the mutant mice showed increased locomotor activity, which was about 2-fold greater than that of the control mice. These results indicate that the loss of RyR-3 causes no gross abnormalities and suggest that the lack of RyR-3-mediated Ca2+ signaling results in abnormalities of certain neurons in the central nervous system. The ryanodine receptor type 3 (RyR-3) functions as a Ca2+-induced Ca2+ release (CICR) channel and is distributed in a wide variety of cell types including skeletal muscle and smooth muscle cells, neurons, and certain non-excitable cells. However, the physiological roles of RyR-3 are totally unclear. To gain an insight into the function of RyR-3 in vivo, we have generated mice lacking RyR-3 by means of the gene targeting technique. The mutant mice thus obtained showed apparently normal growth and reproduction. Although Ca2+-induced Ca2+ release from intracellular Ca2+ stores of the mutant skeletal muscle differed in Ca2+ sensitivity from that of wild-type muscle, excitation-contraction coupling of the mutant muscle seemed to be normal. Moreover, we could not find any significant disturbance in the smooth muscle and lymphocytes from the mutant mice. On the other hand, the mutant mice showed increased locomotor activity, which was about 2-fold greater than that of the control mice. These results indicate that the loss of RyR-3 causes no gross abnormalities and suggest that the lack of RyR-3-mediated Ca2+ signaling results in abnormalities of certain neurons in the central nervous system.
Referência(s)