Artigo Revisado por pares

Fast Tracking of Cardiac Motion Using 3D-HARP

2005; Institute of Electrical and Electronics Engineers; Volume: 52; Issue: 8 Linguagem: Inglês

10.1109/tbme.2005.851490

ISSN

1558-2531

Autores

Li Pan, Jerry L. Prince, João A.C. Lima, N.F. Osman,

Tópico(s)

Cardiac Imaging and Diagnostics

Resumo

Magnetic resonance (MR) tagging is capable of accurate, noninvasive quantification of regional myocardial function. Routine clinical use, however, is hindered by cumbersome and time-consuming postprocessing procedures. We propose a fast, semiautomatic method for tracking three-dimensional (3-D) cardiac motion from a temporal sequence of short- and long-axis tagged MR images. The new method, called 3-D-HARmonic Phase (3D-HARP), extends the HARP approach, previously described for two-dimensional (2-D) tag analysis, to 3-D. A 3-D material mesh model is built to represent a collection of material points inside the left ventricle (LV) wall at a reference time. Harmonic phase, a material property that is time-invariant, is used to track the motion of the mesh through a cardiac cycle. Various motion-related functional properties of the myocardium, such as circumferential strain and left ventricular twist, are computed from the tracked mesh. The correlation analysis of 3D-HARP and FINDTAGS + Tag Strain(E) Analysis (TEA), which are well-established tag analysis techniques, shows that the regression coefficients of circumferential strain (E(CC)) and twist angle are r2 = 0.8605 and r2 = 0.8645, respectively. The total time required for tracking 3-D cardiac motion is approximately 10 min in a 9 timeframe tagged MRI dataset and has the potential to be much faster.

Referência(s)