Circular Dichroism of a Chiral Cyanine Dye Dimer Trapped in γ‐Cyclodextrin
1991; Wiley; Volume: 30; Issue: 7 Linguagem: Inglês
10.1002/anie.199108691
ISSN1521-3773
Autores Tópico(s)Supramolecular Chemistry and Complexes
ResumoAngewandte Chemie International Edition in EnglishVolume 30, Issue 7 p. 869-870 Communication Circular Dichroism of a Chiral Cyanine Dye Dimer Trapped in γ-Cyclodextrin† Dr. Volker Buss, Corresponding Author Dr. Volker Buss Fachgebiet Theoretische Chemie der Universität, Lotharstrasse 1, W-4000 Duisburg (FRG)Fachgebiet Theoretische Chemie der Universität, Lotharstrasse 1, W-4000 Duisburg (FRG)Search for more papers by this author Dr. Volker Buss, Corresponding Author Dr. Volker Buss Fachgebiet Theoretische Chemie der Universität, Lotharstrasse 1, W-4000 Duisburg (FRG)Fachgebiet Theoretische Chemie der Universität, Lotharstrasse 1, W-4000 Duisburg (FRG)Search for more papers by this author First published: July 1991 https://doi.org/10.1002/anie.199108691Citations: 34 † This work was supported by the Fonds der Chemischen Industrie and by KaliChemie. R. Knierim provided excellent technical help. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract A description as twisted sandwich fits the dimer of the cyanine dye 1, when two γ-cyclodextrin molecules occupy the central hollow (see sketch on the right). The torque is caused by the chiral interaction between host and guest, which is synergetically magnified by a preferential head-to-head binding of the two halves of the host. References 1 F. P. Schäfer in F. P. Schäfer (Ed.): Dye Lasers, Springer, Berlin, 1976, p. 1. 2 K. Kasatani, M. Ohashi, M. Kawasaki, H. Sato, Chem. Lett. 1987, 1633; K. Kasatani, M. Ohashi, H. Sato, Carbohydr. Res. 192 (1989) 197; M. Ohashi, K. Kasatani, H. Shinohara, H. Sato, J. Am. Chem. Soc. 112 (1990) 5824. 3 The slight increase of the extinction coefficient compared to that of Figure 1 (lgε539 = 5.4 vs. 5.25) is probably due to the better solubility of the dye in ethylene glycol, which influences specimen preparation. 4 K. Harata, Bull. Chem. Soc. Jpn. 49 (1976) 1493. 5 M. Noltemeyer, W. Saenger, J. Am. Chem. Soc. 102 (1980) 2710. 6 B. Klingert, G. Rihs, Organometallics 9 (1990) 1135. 7 The transition moment was approximated by two opposite charges, of 0.21e each, located at a distance of 1000 pm in the long axis of the dye monomer. 8 Actually, the two states will be closer in energy because the oppositely signed CD bands tend to shift the maxima apart. Citing Literature Volume30, Issue7July 1991Pages 869-870 ReferencesRelatedInformation
Referência(s)