Toward a structural and molecular definition of the kinetochore
1990; Wiley; Volume: 16; Issue: 2 Linguagem: Inglês
10.1002/cm.970160204
ISSN1097-0169
Autores Tópico(s)Cellular transport and secretion
ResumoCell MotilityVolume 16, Issue 2 p. 104-109 Views and Reviews Toward a structural and molecular definition of the kinetochore B. R. Brinkley, Corresponding Author B. R. Brinkley Department of Cell Biology and Anatomy, University of Alabama at Birmingham, Birmingham, AlabamaDepartment of Cell Biology and Anatomy, University of Alabama at Birmingham, Birmingham, AL 35294Search for more papers by this author B. R. Brinkley, Corresponding Author B. R. Brinkley Department of Cell Biology and Anatomy, University of Alabama at Birmingham, Birmingham, AlabamaDepartment of Cell Biology and Anatomy, University of Alabama at Birmingham, Birmingham, AL 35294Search for more papers by this author First published: 1990 https://doi.org/10.1002/cm.970160204Citations: 11AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Arn, P. H., Ketabgian, A., Smith, C., Schwartz, D., and Jabs, E. (1989) The molecular organization of human centromeric regions. In M. Resnick, and B. Vig (eds.) " Mechanisms of Chromosome Distribution and Aneuploidy." New York: Alan R. Liss, Inc., pp. 1–8. Google Scholar Balczon, R., and Brinkley, B. R. (1987): Tubulin interaction with kinetochore proteins: Analysis by in vitro assembly and chemical crosslinking. J. Cell Biol. 105: 855–862. 10.1083/jcb.105.2.855 CASPubMedWeb of Science®Google Scholar Balczon, R., and Brinkley, B. (1989a): Synthesis of azidoiubulin: A photoaffinity label for tubulin-binding proteins. Biochemistry 28: 8490–8496. 10.1021/bi00447a033 CASPubMedWeb of Science®Google Scholar Blackburn, E. and Szostak J., (1984): The molecular structure of centromeres and telomeres. Annu. Rev. Biochem. 53: 163–194. 10.1146/annurev.bi.53.070184.001115 CASPubMedWeb of Science®Google Scholar Bloom, K., and Yeh, E., (1989): Centromeres and telomeres: Structural elements of eukaryotic chromosomes Curr. Opinion Cell Biol. 1: 526–532. 10.1016/0955-0674(89)90015-X CASPubMedWeb of Science®Google Scholar Bloom, K. S., Amaya, E., Carbon, J., Clarke, L., Hill, A. and Yeh, E., (1984): Chromatin conformation of yeast centromeres. J. Cell Biol. 19: 1559–1568. 10.1083/jcb.99.5.1559 Google Scholar Brenner, S. Pepper, D., Berns, M. W., Tan, E. and Brinkley, B. R. (1981): Kinetochore structure, duplication and distribution in mammalian cells: Analysis by human autoantibodies from scle-roderma patients. J. Cell Biol. 91: 95–102. 10.1083/jcb.91.1.95 CASPubMedWeb of Science®Google Scholar Brinkley, B., and Stubblefield, E. (1966): The fine structure of the kinetochore of a mammalian cell in vitru. Chromosoma 19: 28–43. 10.1007/BF00332792 CASPubMedWeb of Science®Google Scholar Brinkley, B., Valdivia, A., Tousson, A., and Brenner, S. L. (1984): Compound kinetochores of the Indian Muntjac: Evolution by linear fusion of unit kinetochores. Chromosoma 91: 1–11. 10.1007/BF00286479 CASPubMedWeb of Science®Google Scholar Brinkley, B., Zinkowski, R., Mollon, W. L., Davis, F. M., Pisegna, M. A., and Pershouse, M., and Rao, P. N. (1988): Movement and segregation of kinetochores experimentally detached from mammalian chromosome. Nature (Lond.) 336: 251–254. 10.1038/336251a0 CASPubMedWeb of Science®Google Scholar Brinkley, B. R., Valdivia, M. M., Tousson, A., and Balczon, R. D. (1989): The kinetochore: Structure and molecular organization. In J. S. Hyams, and B. R. Brinkley (eds.) " Mitosis: Molecules and Mechanisms." London: Academic Press, pp. 77–118. Google Scholar Brinkley, B., Zinkowski, R. P., McCune, S. L., and Carpenter, C. J. (1990): In K. Fredga (ed.) " Chromosomes Today." Vol. 10. London: Unwin Hyman. Ltd. Web of Science®Google Scholar Cherry, E., Faulkner, A. L., Grossberg, L. A., and Balczon, R. (1989) Kinetochore size variation in mammalian chromosomes: An image analysis study with evolutionary implications. J. Cell Sci. 92: 281–289. PubMedWeb of Science®Google Scholar Clarke, L., and Carbon, J. (1985): The structure and function of yeast centromeres. Annu. Rev. Genet. 19: 29–56. 10.1146/annurev.ge.19.120185.000333 CASPubMedWeb of Science®Google Scholar Cooke, H., and Hindley, J. (1979): Cloning of human satellite III DNA: Different components are on different chromosomes. Nucl. Acid Res. 6: 3177–3179. 10.1093/nar/6.10.3177 CASPubMedWeb of Science®Google Scholar Cooke, C., Heck, M., and Earnshaw, W. (1987): The inner centromere protein (INCENP) antigens: Movement from inner centromeres to midbody during mitosis. J. Cell Biol. 105: 2053–2067. 10.1083/jcb.105.5.2053 CASPubMedWeb of Science®Google Scholar Davis, F. M., Tsao, O., Fowler, S., and Rao, P. (1983): Monoclonal antibodies to mitotic cells. Proc. Natl. Acad. Sci. U.S.A. 80: 2926–2930. 10.1073/pnas.80.10.2926 CASPubMedWeb of Science®Google Scholar Earnshaw, W., and Rothfield, N. (1985): Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321. 10.1007/BF00328227 CASPubMedWeb of Science®Google Scholar Earnshaw, W., Bordwell, C., Marino, C., and Rothfield, N. (1985): Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. J. Clin. Invest. 77: 426–429. 10.1172/JCI112320 PubMedWeb of Science®Google Scholar Earnshaw, W., Sullivan, K., Machlin, P., Cooke, C., Kaiser, D., Pollard, T., Rothfield, N., and Cleveland, D. (1987): Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol. 104: 817–829. 10.1083/jcb.104.4.817 CASPubMedWeb of Science®Google Scholar Fitzgerald-Hayes, M., Clarke, L., and Carbon, J. (1982): Nucleotide sequence comparisons and functional analysis of yeast centromere DNA. Cell 29: 235–244. 10.1016/0092-8674(82)90108-8 CASPubMedWeb of Science®Google Scholar Gorbsky, G., Sammak, P., and Borisy, G. (1987): Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from the kinetochore. J. Cell Biol. 104: 9–18. 10.1083/jcb.104.1.9 PubMedWeb of Science®Google Scholar Gorbsky, G., Sammak, P., and Borisy, G. (1988): Microtubule dynamics and chromosomes motion visualized in living anaphase cells. J. Cell Biol. 106: 1185–1192. 10.1083/jcb.106.4.1185 CASPubMedWeb of Science®Google Scholar Higgins, M., Wang, H., Shtromas, I., Haliotos, T., Roder, J., Holden, J., and White, B. (1985): Organization of a repetitive human 1.8 kb Kpn I sequence localized in the heterochromatin of chromosome 15. Chromosoma 93: 77–86. 10.1007/BF01259449 CASPubMedWeb of Science®Google Scholar Hill, T. (1985): Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl. Acad. Sci. U.S.A. 82: 4404–4408. 10.1073/pnas.82.13.4404 CASPubMedWeb of Science®Google Scholar Jokelainen, P. T. (1967): Ultrastructural and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19: 19–44. 10.1016/S0022-5320(67)80058-3 CASPubMedWeb of Science®Google Scholar Kellogg, D., Field, C. M., and Alberts, B. (1989): Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. J. Cell Biol. 109: 2977–2991. 10.1083/jcb.109.6.2977 CASPubMedWeb of Science®Google Scholar Kingwell, B., and Rattner, J. (1987): Mammalian kinetochore/cen-tromere composition: A 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma 95: 403–407. 10.1007/BF00333991 CASPubMedWeb of Science®Google Scholar Margolis, R., and Wilson, L. (1981): Microtubule treadmills-possible molecular machinery. Nature (Lond.) 293: 705–708. 10.1038/293705a0 CASPubMedWeb of Science®Google Scholar Masumoto, H., Masukata, H., Muro, Y., Nozaki, N., and Okazaki, T. (1989): A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human cen-tromere satellite. J. Cell Biol. 109: 1963–1973. 10.1083/jcb.109.5.1963 CASPubMedWeb of Science®Google Scholar Maul, G., French, B., Van Venrooj, W., and Jimenez, S. (1986): Topoisomerase I identified by scleroderma 70 antisera: Enrichment of topoisomerase I at the centromere in mouse mitotic cells before anaphase. Proc. Natl. Acad. Sci. U.S.A. 83: 5145–5149. 10.1073/pnas.83.14.5145 CASPubMedWeb of Science®Google Scholar McDonald, K. (1989): Mitotic spindle ultrastructure and design. In J. S. Hyams, and B. R. Brinkley (eds.) " Mitosis: Molecules and Mechanisms." London: Academic Press, pp. 1–38. Google Scholar Mitchison, T., and Kirschner, M. (1985a): Properties of the kineto-chore in vitro. 1. Microtubule nucleation and tubulin binding. J. Cell Biol. 101: 755–765. 10.1083/jcb.101.3.755 CASPubMedWeb of Science®Google Scholar Mitchison, T., and Kirschner, M. (1985b): Microtubule capture and ATP dependent translocation. J. Cell Biol. 101: 766–777. 10.1083/jcb.101.3.766 CASPubMedWeb of Science®Google Scholar Moroi, Y., Peeples, C., Fritzler, M. J., Steigerwald, J., and Tan, E. M. (1980): Autoantibody to centromere (kinetochore) in scleroderma sera. Proc. Natl. Acad. Sci. U.S.A. 77: 1627–1631. 10.1073/pnas.77.3.1627 CASPubMedWeb of Science®Google Scholar Moyzis, R., Albright, K., Bartholdi, M., Cram, L., Dfaven, L., Hilderbrand, C., Joste, N., Longmire, J., Mayne, J. and Schwarzacher-Robinson, T. (1987): Human chromosome-specific repetitive DNA sequences: Novel markers for genetic analysis. Chromosoma 95: 375–386. 10.1007/BF00333988 CASPubMedWeb of Science®Google Scholar Nicklas, R. B. (1989): The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J. Cell Biol. 109: 2245–2255. 10.1083/jcb.109.5.2245 CASPubMedWeb of Science®Google Scholar Palmer, D., and Margolis, R. L. (1985): Kinetcchore components recognized by human autoantibodies are present on mononucleosomes. Mol. Cell Biol. 5: 173–186. 10.1128/MCB.5.1.173 CASPubMedWeb of Science®Google Scholar Palmer, D., O'Day, K., Wener, M., Andrews, B., and Margolis, R. (1987): A 17 kDa centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104: 805–815. 10.1083/jcb.104.4.805 CASPubMedWeb of Science®Google Scholar Pardue, M., and Gall, J., (1970): Chromosomal localization of mouse satellite DNA. Science 168: 1356–1358. 10.1126/science.168.3937.1356 CASPubMedWeb of Science®Google Scholar Pepper, D., and B. R. Brinkley (1980): Tubulin nucleation and assembly in mitotic cells: Evidence for nucleic acids in kinetochores and centrosomes. Cell Motil. 1: 1–15. 10.1002/cm.970010102 CASPubMedWeb of Science®Google Scholar Peterson, J., and Ris, H. (1976): Electron microscopic study of spindle and chromosome movement in the yeast Saccharomyses cerevisiae. J. Cell Sci. 22: 219–242. CASPubMedWeb of Science®Google Scholar Pfarr, C. M., Cove, M., Grissom, P. M., Hay, T. S., Porter, M. E., and McIntosh, J. R. (1990): Cytoplasmic dynein localizes to kinetochores during mitosis. Nature (in press). Google Scholar Rattner, J., Kingwell, B., and Fritzler, M. (1988): Detection of distinct structural domains within the primary constriction using autoantibodies. Chromosoma 96: 360–367. 10.1007/BF00330702 CASPubMedWeb of Science®Google Scholar Rieder, C. L. (1982): The formation, structure and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 79: 1–58. 10.1016/S0074-7696(08)61672-1 CASPubMedWeb of Science®Google Scholar Rieder, C., Alexander, S. P. (1990): Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110: 81–95. 10.1083/jcb.110.1.81 CASPubMedWeb of Science®Google Scholar Schrader, F. (1943): " Mitosis: The Movement of Chromosomes in Cell Division." New York: Columbia University Press, Google Scholar Sluder, G. (1990): Functional properties of kinetochores in animal cells. Curr. Opinion Cell Biol. (in press). Google Scholar Tan, E., Rodnan, G., Garcia, I., Moroi, Y., Fritzler, M., and Peebles, C. (1980): Diversity of antinuclear antibodies in progressive systemic sclerosis-anti-centromere antibody and its relationship to CREST syndrome. Arthritis Rheum. 23: 617. 10.1002/art.1780230602 CASPubMedWeb of Science®Google Scholar Valdivia, M., and Brinkley, B. (1985): Fractionation and initial characterization of the kinetochore from mammalian metaphase chromosome. J. Cell Biol. 101: 1124–1134. 10.1083/jcb.101.3.1124 CASPubMedWeb of Science®Google Scholar Willard, H., and Waye, J. (1987): Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet. 3: 192–198. 10.1016/0168-9525(87)90232-0 CASWeb of Science®Google Scholar Wong, A. K. C., and Rattner, J. B., (1988): Sequence organization and cytological localization of the minor satellite of mouse. Nucl. Acid Res. 16: 11645–11661. 10.1093/nar/16.24.11645 CASPubMedWeb of Science®Google Scholar Zinkowski, R., McCune, S., Balezon, R., Rao, P., and Brinkley, B. (1989): The centromere and aneuploidy. I. Caffeine-induced detachment and fragmentation of kinetochore of mammalian chromosomes. In M. Resnick, and B. Vig (eds.) " Mechanisms of Chromosome Distribution and Aneuploidy." New York: Alan R. Liss, Inc., pp. 43–60. Google Scholar Citing Literature Volume16, Issue21990Pages 104-109 ReferencesRelatedInformation
Referência(s)