Artigo Revisado por pares

The paleomagnetic record in carbonaceous chondrites: Natural remanence and magnetic properties

1974; American Geophysical Union; Volume: 79; Issue: 14 Linguagem: Inglês

10.1029/jb079i014p02081

ISSN

2156-2202

Autores

Aviva Brecher, Gustaf Arrhenius,

Tópico(s)

High-pressure geophysics and materials

Resumo

Journal of Geophysical Research (1896-1977)Volume 79, Issue 14 p. 2081-2106 The paleomagnetic record in carbonaceous chondrites: Natural remanence and magnetic properties Aviva Brecher, Aviva BrecherSearch for more papers by this authorGustaf Arrhenius, Gustaf ArrheniusSearch for more papers by this author Aviva Brecher, Aviva BrecherSearch for more papers by this authorGustaf Arrhenius, Gustaf ArrheniusSearch for more papers by this author First published: 10 May 1974 https://doi.org/10.1029/JB079i014p02081Citations: 51AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Recent results of an intensive study of the natural remanence (NRM) and the magnetic properties of carbonaceous chondrites (CC) are summarized. It is convincingly demonstrated that the record of ancient magnetic fields has been preserved in these least-altered old samples of solar system material known. Intensities of specific NRM in the 13 meteorites surveyed span a broad range of values from 5 × 10−5 to ∼0.5 emu/g. A low-temperature cleaning technique, based on the memory effect in magnetite grains, was followed by alternating field (af) demagnetization of the residual memory to exhibit the relative stability of NRM in the CC studied. No systematic correlation was found of either intensity or stability of NRM to af demagnetization with petrologic subtype, beyond a trend of increasing stability of memory from C2 to C4. The intensity and stability behavior of the saturation remanence are better suited for use in a magnetic classification of CC. Although type I and II meteorites have very similar stability of memory, they exhibit distinct saturation remanence behavior. In general, CC of types I and II appear more coherent as magnetic groups than type III members. Allende has a uniquely stable natural and saturation remanence. The progressive demagnetization diagrams of NRM showed the presence of a single well-preserved stable paleoremanence component in the meteorites Ivuna (I); Haripura, Cold Bokkeveld, Mighei, Murray, and Renazzo (II); and Vigarano, Coolidge, and Allende (III). The magnetic record in examined samples of Orgueil (I), Mokoia (III-V), and Karoonda (III-O) has been affected by several magnetizing events. The study of viscous remanence acquisition by partially demagnetized CC confirmed that the original NRM has not been significantly changed by residence in earth's field. The unidirectionality and stability of NRM in at least 9 CC indicates that neither strong fields nor high temperatures have modified the original magnetic record. The large coercivites (Hc ≳ 100 Oe) of several CC also reflect the ability to carry stable remanence. Room temperature hysteresis loops and values of magnetic parameters derived therefrom were used to estimate the volume fraction and the relative amounts of single-domain to multidomain magnetic grains. The large anisotropies of magnetic susceptibility found in several CC(P ≲ 2 typically, but up to 5 in Allende) reflect both magnetic and textural alignment of carrier grains. References Alfvén, H., G. Arrhenius, Origin and evolution of the solar system, 3, Astrophys. Space Sci., 21, 117, 1973. Anders, E., Meteorites and the early solar system, Annu. Rev. Astron. Astrophys., 9, 1, 1971. Arrhenius, G., H. Alfvén, Fractionation and condensation in space, Earth Planet. Sci. Lett., 10, 253, 1971. Arrhenius, G., S. K. Asunmaa, Aggregation of grains in space, Moon, 8, 368, 1973. Banerjee, S. K., R. B. Hargraves, Natural remanent magnetization of carbonaceous chondrites, Earth Planet. Sci. Lett., 10, 392, 1971. Banerjee, S. K., R. B. Hargraves, Natural remanent magnetization of carbonaceous chondrites and the magnetic field in the early solar system, Earth Planet. Sci. Lett., 17, 110, 1972. Bean, C. P., Hysteresis loops of mixtures of ferromagnetic micropowders, J. Appl. Phys., 26, 1381, 1955. Bean, C. P., I. S. Jacobs, Magnetization of a dilute suspension of a multidomain ferromagnetic, J. Appl. Phys., 31, 1228, 1960. Bhathal, R. S., F. D. Stacey, Field induced anisotropy of magnetic susceptibility in rocks, Phys. Appl. Geophys., 76, 123, 1969. Brecher, A., On the primordial condensation and accretion environment and the remanent magnetization of meteorites, The Evolutionary and Physical Problems of MeteroidsNASA Spec. Publ. 319, 1971a. Brecher, A., Early interplanetary magnetic fields and the remanent magnetization of meteorites, Publ. Astron. Soc. Pac., 83, 602, 1971b. Brecher, A., The paleomagnetic record in carbonaceous chondrites, Ph.D. thesis, part 2,Univ. of Calif.,San Diego,1972a. Brecher, A., Memory of early magnetic fields in carbonaceous chondrites, On the Origin of the Solar System H. Reeves, 260, Centre Nationale de la Recherche Scientifique, Paris, 1972b. Brecher, A., Magnetic memory in carbonaceous chondrites (abstract), EOS Trans. AGU, 53, 436, 1972c. Brecher, A., The paleomagnetic record in carbonaceous chondrites, Meteoritics, 8, 17, 1973. Brecher, A., G. Arrhenius, The paleomagnetic record in carbonaceous chondrites: Modeling of natural remanence and paleofield intensities, J. Geophys. Res., 1974. Butler, R. F., Natural remanent magnetization and thermomagnetic properties of the Allende meteorite, Earth Planet. Sci. Lett., 17, 120, 1972. Clarke, R. S., B. Mason, J. Nelen, M. Gómez, J. R. Hyde, The Allende, Mexico meteorite shower, Smithson. Contrib. Earth Sci., 5, 1970. Deer, W. A., R. A. Howie, J. Zussman, Rock Forming Minerals, , 5, 151, Longmans, Green, Toronto, Ont., 1963. Dodd, R. T., Preferred orientation of chondrules in chondrites, Icarus, 4, 308, 1965. Du Fresne, E. R., E. Anders, The record in meteorites, 5, A thermometer mineral in the Mighei carbonaceous chondrite, Geochim. Cosmochim. Acta, 23, 200, 1961. Du Fresne, E. R., E. Anders, On the chemical evolution of carbonaceous chondrites, Geochim. Cosmochim. Acta, 26, 1085, 1962. Dunlop, D. J., Magnetite: Behavior near the single domain threshold, Science, 176, 41, 1972. Dunlop, D. J., Superparamagnetic and single-domain threshold sizes in magnetite, J. Geophys. Res., 78, 1780, 1973. Dunlop, D. J., G. F. West, An experimental evaluation of single-domain theories, Rev. Geophys. Space Phys., 7, 709, 1969. Elston, D. P., Accretion of Murray carbonaceous chondrite and implications regarding chondrule and chondrite formationA.S.U. Publ., 8, Center for Meteorite Stud., Ariz. State Univ., Tempe, 1967. Fuller, M. D., Geophysical aspects of paleomagnetism, CRC Critical Reviews, Solid State Sci., 1970. Grossman, L., Condensation in the primitive solar nebula, Geochim. Cosmochim. Acta, 36, 59, 1972. Guskova, E. G., Study of the remanent magnetization of iron and stony-iron meteorites, Geomagn. Aeron., 5, 91, 1965. Guskova, E. G., V. I. Pochtarev, Magnetic properties of meteorites of the USSR collection, Meteorite Research, , 12 P. M. Millman, 633, D. Reidel, Dordrecht, Netherlands, 1968. Harris, P. G., D. C. Tozer, Fractionation of iron in the solar system, Nature, 215, 1449, 1967. Herzog, G. F., E. Anders, E. C. Alexander Jr., P. K. Davis, R. S. Lewis, Iodine-129/xenon-129 age of magnetite from the Orgueil meteorite, Science, 180, 489, 1973. Hrouda, F., M. Chlupacova, L. Rejl, The mimetic fabric in some foliated granodiorites, as indicated by magnetic anisotropy, Earth Planet. Sci. Lett., 11, 381, 1971. Jedwab, J., La magnétite de la metéorite d'Orgueil vue au microscope electronique a bàlâyage, Icarus, 15, 319, 1971. Jeffery, P. M., E. Anders, Origin of primordial noble gases in separated meteoritic minerals, 1, Geochim. Cosmochim. Acta, 34, 1175, 1970. Kaula, W. M., An Introduction to Planetary Physics: The Terrestrial Planets, John Wiley, New York, 1968. Kerridge, J. F., Some observations on the nature of magnetite in the Orgueil meteorite, Earth Planet. Sci. Lett., 9, 299, 1970a. Kerridge, J. K., Meteoritic pyrrhotite, Meteoritics, 7, 149, 1970b. Kneller, E., Fine particle theory, Magnetism and Metallurgy, , 1 366, Academic, New York, 1969. Lewis, J. S., Low temperature condensation from the solar nebula, Icarus, 16, 241, 1972. Lowrie, W., M. Fuller, On the af demagnetization characteristics of multidomain thermoremanent magnetization in magnetite, J. Geophys. Res., 76, 6339, 1971. Mason, B., The carbonaceous chondrites—A selective review, Meteoritics, 6, 59, 1971. Mason, B., H. B. Wiik, Descriptions of two meteorites: Karoonda and Erakot, Amer. Mus. Nov., 2115, 1, 1962. Mendelson, L. I., F. E. Luborsby, T. O. Paine, Permanent-magnet properties of elongated single-domain iron particles, J. Appl. Phys., 26, 1274, 1955. Merrill, R. T., Low temperature treatments of magnetite and magnetite-bearing rocks, J. Geophys. Res., 75, 3343, 1970. Morrish, A. H., L. A. K. Watt, Effect of the interaction between magnetic particles on the critical single-domain size, Phys. Rev., 105, 1476, 1957. Nagata, T., Rock Magnetism, Maruzen, Tokyo, 1961. Nagata, T., M. Yama-ai, S. Akimoto, Memory of initial remanent magnetization and number of repeating heat treatments in low-temperature behavior of hematite, Nature, 190, 620, 1961. Ozima, M., M. Ozima, T. Nagata, Low temperature treatment as an effective means of magnetic cleaning of natural remanent magnetization, J. Geomagn. Geoelec., 16, 37, 1964a. Ozima, M., M. Ozima, S. Akimoto, Low temperature characteristics of remanent magnetization of magnetite, J. Geomagn. Geoelec., 16, 165, 1964b. Parry, L. G., Magnetic properties of dispersed magnetite powders, Phil. Mag., 11, 303, 1965. Pochtarev, V. I., E. G. Guskova, The magnetic properties of meteorites, Geomagn. Aeronom., 2, 626, 1962. Ramdohr, P., The opaque minerals in stony meteorites, J. Geophys. Res., 68, 2011, 1963. Stacey, F. D., The physical theory of magnetism, Advan. Phys., 12, 45, 1963. Stacey, F. D., J. F. Lovering, L. G. Parry, Thermomagnetic properties, natural magnetic moments and magnetic anisotropies of some chondritic meteorites, J. Geophys. Res., 66, 1523, 1961. Strangway, D. W., E. E. Larson, M. Goldstein, A possible cause of high magnetic stability in volcanic rocks, J. Geophys. Res., 73, 3787, 1968. Uyeda, S., M. D. Fuller, J. C. Belshe, R. W. Girdler, Anisotropy of magnetic susceptibility of rocks and minerals, J. Geophys. Res., 68, 279, 1963. Van Schmus, W. R., M. J. Hayes, Chemical and petrographic correlations among carbonaceous chondrites, Geochim. Cosmochim. Acta, 38, 47, 1974. Van Schmus, W. R., J. A. Wood, A chemical-petrologic classification for the chondritic meteorites, Geochim. Cosmochim. Acta, 31, 737, 1967. Weaving, B., Magnetic anisotropy in chondritic meteorites, Geochim. Cosmochim. Acta, 26, 451, 1962. Wood, J. A., Chondrites: Their metallic minerals, thermal histories and parent planets, Icarus, 6, 1, 1967. Zijderveld, J. D. A., A. C. demagnetization of rocks: Analysis of results, Methods in Paleomagnetism, , 3 254, Elsevier, New York, 1967. Citing Literature Volume79, Issue14Solid Earth and Planets10 May 1974Pages 2081-2106 ReferencesRelatedInformation

Referência(s)