Construction of the Complete Aromatic Core of Diazonamide A by a Novel Hetero Pinacol Macrocyclization Cascade Reaction
2001; Wiley; Volume: 40; Issue: 24 Linguagem: Inglês
10.1002/1521-3773(20011217)40
ISSN1521-3773
AutoresK. C. Nicolaou, Xianhai Huang, Nicolas Giuseppone, Paraselli Bheema Rao, Marco Bella, Mali V. Reddy, Scott A. Snyder,
Tópico(s)Cyclopropane Reaction Mechanisms
ResumoAngewandte Chemie International EditionVolume 40, Issue 24 p. 4705-4709 Communication Construction of the Complete Aromatic Core of Diazonamide A by a Novel Hetero Pinacol Macrocyclization Cascade Reaction K. C. Nicolaou Prof. Dr., K. C. Nicolaou Prof. Dr. [email protected] Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorXianhai Huang Dr., Xianhai Huang Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorNicolas Giuseppone Dr., Nicolas Giuseppone Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorParaselli Bheema Rao Dr., Paraselli Bheema Rao Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorMarco Bella Dr., Marco Bella Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorMali V. Reddy Dr., Mali V. Reddy Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorScott A. Snyder, Scott A. Snyder Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this author K. C. Nicolaou Prof. Dr., K. C. Nicolaou Prof. Dr. [email protected] Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorXianhai Huang Dr., Xianhai Huang Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorNicolas Giuseppone Dr., Nicolas Giuseppone Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorParaselli Bheema Rao Dr., Paraselli Bheema Rao Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorMarco Bella Dr., Marco Bella Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorMali V. Reddy Dr., Mali V. Reddy Dr. Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this authorScott A. Snyder, Scott A. Snyder Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA, Fax: (+1) 858-784-2469 and Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093, USASearch for more papers by this author First published: 18 December 2001 https://doi.org/10.1002/1521-3773(20011217)40:24 3.0.CO;2-DCitations: 75 We thank Drs. D. H. Huang and G. Suizdak for NMR spectroscopic and mass spectrometric assistance, respectively. Financial support for this work was provided by The Skaggs Institute for Chemical Biology, the National Institutes of Health (USA), American Biosciences, a predoctoral fellowship from the National Science Foundation (S.A.S.), a postdoctoral fellowship from the Association pour la Recherche sur le Cancer (N.G.), and grants from Abbott, Amgen, Array Biopharma, Boehringer-Ingelheim, Glaxo, Hoffmann-LaRoche, DuPont, Merck, Novartis, Pfizer, and Schering Plough. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract One of the most enticing natural products isolated in recent years and a serious challenge to synthetic chemists is represented by the potent anticancer agent diazonamide A (1). By utilizing a highly convergent approach, the ABCDEF macrocycle 2 was constructed in only 16 linear steps based on a key intermolecular Suzuki coupling reaction to generate the C16−C18 biaryl linkage and a remarkable SmI2-induced hetero pinacol coupling cascade sequence. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2001/z17940_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 N. Lindquist, W. Fenical, G. D. Van Duyne, J. Clardy, J. Am. Chem. Soc. 1991, 113, 2303–2304. 2 2a P. Magnus, C. Lescop, Tetrahedron Lett. 2001, 42, 7193–7196; 2b E. Vedejs, M. A. Zajac, Org. Lett. 2001, 3, 2451–2454; 2c J. Li, X. Chen, A. W. G. Burgett, P. G. Harran, Angew. Chem. 2001, 113, 2754–2757; Angew. Chem. Int. Ed. 2001, 40, 2682–2685; 2d P. Wipf, J.-L. Methot, Org. Lett. 2001, 3, 1261–1264; 2e J. D. Kriesberg, P. Magnus, E. G. McIver, Tetrahedron Lett. 2001, 42, 627–629; 2f A. Radspieler, J. Liebscher, Synthesis 2001, 745–750; 2g D. E. Fuerst, B. M. Stoltz, J. L. Wood, Org. Lett. 2000, 2, 3521–3523; 2h X. Chen, L. Esser, P. G. Harran, Angew. Chem. 2000, 112, 967–970; Angew. Chem. Int. Ed. 2000, 39, 937–940; 2i E. Vedejs, J. Wang, Org. Lett. 2000, 2, 1031–1032; 2j E. Vedejs, D. A. Barba, Org. Lett. 2000, 2, 1033–1035; 2k P. Magnus, E. G. McIver, Tetrahedron Lett. 2000, 41, 831–834; 2l F. Chan, P. Magnus, E. G. McIver, Tetrahedron Lett. 2000, 41, 835–838; 2m F. Lach, C. J. Moody, Tetrahedron Lett. 2000, 41, 6893–6896; 2n M. C. Bagley, S. L. Hind, C. J. Moody Tetrahedron Lett. 2000, 41, 6897–6900; 2o M. C. Bagley, C. J. Moody, A. G. Pepper, Tetrahedron Lett. 2000, 41, 6901–6904; 2p H. C. Hang, E. Drotleff, G. I. Elliott, T. A. Ritsema, J. P. Konopelski, Synthesis 1999, 398–400; 2q P. Magnus, J. D. Kreisberg, Tetrahedron Lett. 1999, 40, 451–454; 2r A. Boto, M. Ling, G. Meek, G. Pattenden, Tetrahedron Lett. 1998, 39, 8167–8170; 2s P. Wipf, F. Yokokawa, Tetrahedron Lett. 1998, 39, 2223–2226; 2t S. Jeong, X. Chen, P. G. Harran, J. Org. Chem. 1998, 63, 8640–8641; 2u C. J. Moody, K. J. Doyle, M. C. Elliott, T. J. Mowlem, J. Chem. Soc. Perkin Trans. 1 1997, 2413–2419; 2v J. P. Konolpelski, J. M. Hottenroth, H. M. Oltra, E. A. Veliz, Z. C. Yang, Synlett 1996, 609–611; 2w C. J. Moody, K. J. Doyle, M. C. Elliott, T. J. Mowlem, Pure Appl. Chem. 1994, 66, 2107–2110. 3 K. C. Nicolaou, S. A. Snyder, K. B. Simonsen, A. E. Koumbis, Angew. Chem. 2000, 112, 3615–3620; Angew. Chem. Int. Ed. 2000, 39, 3473–3478. 4 K. B. Sharpless, R. F. Lauer, O. Repic, A. Y. Teranishi, D. R. Williams, J. Am. Chem. Soc. 1971, 93, 3303–3304. 5 5a F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc. 1999, 121, 6771–6772; 5b E. J. Corey, S. Sarshar, M. D. Azimioara, R. Newbold, M. C. Noe, J. Am. Chem. Soc. 1996, 118, 7851–7852. 6 K. C. Nicolaou, S. A. Snyder, A. Bigot, J. A. Pfefferkorn, Angew. Chem. 2000, 112, 1135–1138; Angew. Chem. Int. Ed. 2000, 39, 1093–1096. 7 M. Hudlicky, Reductions in Organic Chemistry, ACS Monograph 188, American Chemical Society, 1996, pp. 149–189. 8 R. L. Parsons, C. H. Heathcock, J. Org. Chem. 1994, 59, 4733–4734. 9 Use of Martin's sulfurane as well as variants of the Gabriel–Robinson cyclodehydration such as PPh3/Cl6C2/Et3N (see P. Wipf, C. P. Miller, J. Org. Chem. 1993, 58, 3604–3606) failed to deliver the desired compound. In a related system, pTsOH in toluene was the reported condition employed for oxazole formation (see ref. [2d]). 10 K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Palvannan, E. J. Sorensen, Nature 1994, 367, 630–633. 11 11a E. J. Corey, S. G. Pyne, Tetrahedron Lett. 1983, 24, 2821–2824; 11b D. J. Hart, F. L. Seely, J. Am. Chem. Soc. 1988, 110, 1631–1633; 11c P. A. Bartlett, K. L. McLaren, P. C. Ting, J. Am. Chem. Soc. 1988, 110, 1633–1634. 12 For selected examples, see: 12a T. Hanamoto, J. Inanaga, Tetrahedron Lett. 1991, 32, 3555–3556; 12b H. Miyabe, R. Shibata, C. Ushiro, T. Naito, Tetrahedron Lett. 1998, 39, 631–634. 13 For selected examples, see: 13a D. Riber, R. Hazell, T. Skrydstrup, J. Org. Chem. 2000, 65, 5382–5390; 13b G. E. Keck, T. T. Wager, J. F. D. Rodriguez, J. Am. Chem. Soc. 1999, 121, 5176–5190; 13c G. E. Keck, S. F. McHardy, J. A. Murry, J. Org. Chem. 1999, 64, 4465–4476; 13d J. Tormo, D. S. Hays, G. C. Fu, J. Org. Chem. 1998, 63, 201–202; 13e H. Miyabe, M. Torieda, K. Inoue, K. Tajiri, T. Kiguchi, T. Naito, J. Org. Chem. 1998, 63, 4397–4407; 13f G. E. Keck, T. T. Wager, J. Org. Chem. 1996, 61, 8366–8367; 13g T. Kiguchi, K. Tajiri, I. Ninomiya, T. Naito, H. Hiramatsu, Tetrahedron Lett. 1995, 36, 253–256; 13h P. Camps, M. Font-Bardia, D. Muñoz-Torrero, X. Solans, Liebigs Ann. 1995, 523–535; 13i T. Shono, N. Kise, T. Fujimoto, A. Yamanami, R. Nomura, J. Org. Chem. 1994, 59, 1730–1740; 13j T. Naito, K. Tajiri, T. Harimoto, I. Ninomiya, T. Kiguchi, Tetrahedron Lett. 1994, 35, 2205–2206; 13k J. Marco-Contelles, L. Martínez, A. Martínez-Grau, C. Pozuelo, M. L. Jimeno, Tetrahedron Lett. 1991, 32, 6437–6440. 14 For recent review articles on the application of SmI2 in organic synthesis, see: 14a A. Krief, A.-M. Laval, Chem. Rev. 1999, 99, 745–777; 14b G. A. Molander, C. R. Harris, Tetrahedron 1998, 54, 3321–3354; 14c G. A. Molander, C. R. Harris, Chem. Rev. 1996, 96, 307–338; 14d T. Skrydstrup, Angew. Chem. 1997, 110, 355–357; Angew. Chem. Int. Ed. Engl. 1997, 36, 345–347. 15 J. A. Stafford, N. L. Valvano, J. Org. Chem. 1994, 59, 4346–4349. Although one might expect the formation of a seven-membered carbamate upon reaction with 1,1′-carbonyl diimidazole, we hypothesize that in this particular case the formation of five-membered rings is favored exclusively based on considerations of ring strain. 16 T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508–7510. 17 A. Padwa, D. Dehm, T. Oine, G. A. Lee, J. Am. Chem. Soc. 1975, 97, 1837–1845. 18 The addition of HCHO was achieved using the protocol reported by S. Kobayashi, I. Hachiya, J. Org. Chem. 1994, 59, 3590–3596. For a related example, see: P. Bernardelli, O. M. Moradei, D. Friedrich, J. Yang, F. Gallou, B. P. Dyck, R. W. Doskotch, T. Lange, L. A. Paquette, J. Am. Chem. Soc. 2001, 123, 9021–9032. 19 19a J. L. Namy, P. Girard, H. B. Kagan, Nouv. J. Chem. 1977, 1, 5–7; 19b P. Girard, J. L. Namy, H. B. Kagan, J. Am. Chem. Soc. 1980, 102, 2693–2698. 20 20a G. E. Keck, T. T. Wager, S. F. McHardy, Tetrahedron 1999, 55, 11 755–11 772; 20b J. L. Chiara, C. Destabel, P. Gallego, J. Marco-Contelles, J. Org. Chem. 1996, 61, 359–360; 20c G. E. Keck, S. F. McHardy, T. T. Wager, Tetrahedron Lett. 1995, 36, 7419–7422. 21 J. Marco-Contelles, P. Gallego, M. Rodríguez-Fernández, N. Khiar, C. Destabel, M. Berbabé, A. Martínez-Grau, J. L. Chiara, J. Org. Chem. 1997, 62, 7397–7412. For a preliminary disclosure of the same reductive coupling/N−O cleavage and an example with altered protecting groups, see 21a J. L. Chiara, J. Marco-Contelles, N. Khiar, P. Gallego, C. Destabel, M. Bernabé, J. Org. Chem. 1995, 60, 6010–6011; 21b S. Bobo, I. Storch de Gracia, J. L. Chiara, Synlett 1999, 1551–1554. 22 The role of H2O is either as a proton source or, more likely, as a donor ligand which increases the reducing power of SmI2. For leading references, see: 22a S. Hanessian, C. Girard, Synlett 1994, 861–862; 22b E. Hasegawa, D. P. Curran, J. Org. Chem. 1993, 58, 5008–5010. 23 Although POCl3/DMF has been reported several times for oxazole formation from ketoamides, use of neat POCl3 is far more rare. For one example, see: R. L. Dow, J. Org. Chem. 1990, 55, 386–388. 24 In one particularly instructive example, remote substituents played a critical role in the ease of MOM cleavage from an indole substrate: A. I. Meyers, T. K. Highsmith, P. T. Buonara, J. Org. Chem. 1991, 56, 2960–2964. 25 J. E. Macor, J. T. Forman, R. J. Post, K. Ryan, Tetrahedron Lett. 1997, 38, 1673–1676. 26 C. T. Brain, J. M. Paul, Synlett 1999, 1642–1644. 27 This protocol represents a new method for MOM cleavage on indoles, particularly for acid-sensitive substrates since typical deprotection procedures utilize HCl at elevated temperatures. Since previous reports have already established the acid-sensitivity of the aryl chlorine atoms on the diazonamide skeleton that bears a free indole (see ref. [2c]), the ability to initially cleave the methyl ether only, followed by basic hydrolysis, is crucial for the survival of the chlorine substituents in 2. Citing Literature Volume40, Issue24December 17, 2001Pages 4705-4709 ReferencesRelatedInformation
Referência(s)