Revisão Revisado por pares

Coevolution theory of the genetic code at age thirty

2005; Wiley; Volume: 27; Issue: 4 Linguagem: Inglês

10.1002/bies.20208

ISSN

1521-1878

Autores

J. Tze‐Fei Wong,

Tópico(s)

Protein Structure and Dynamics

Resumo

BioEssaysVolume 27, Issue 4 p. 416-425 Problems and paradigms Coevolution theory of the genetic code at age thirty J. Tze-Fei Wong, Corresponding Author J. Tze-Fei Wong [email protected] Applied Genomics Laboratory and Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong, China.Applied Genomics Laboratory and Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong, China.Search for more papers by this author J. Tze-Fei Wong, Corresponding Author J. Tze-Fei Wong [email protected] Applied Genomics Laboratory and Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong, China.Applied Genomics Laboratory and Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong, China.Search for more papers by this author First published: 15 March 2005 https://doi.org/10.1002/bies.20208Citations: 161AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The coevolution theory of the genetic code, which postulates that prebiotic synthesis was an inadequate source of all twenty protein amino acids, and therefore some of them had to be derived from the coevolving pathways of amino acid biosynthesis, has been assessed in the light of the discoveries of the past three decades. Its four fundamental tenets regarding the essentiality of amino acid biosynthesis, role of pretran synthesis, biosynthetic imprint on codon allocations and mutability of the encoded amino acids are proven by the new knowledge. Of the factors that guided the evolutionary selection of the universal code, the relative contributions of Amino Acid Biosynthesis: Error Minimization: Stereochemical Interaction are estimated to first approximation as 40,000,000:400:1, which suggests that amino acid biosynthesis represents the dominant factor shaping the code. The utility of the coevolution theory is demonstrated by its opening up experimental expansions of the code and providing a basis for locating the root of life. BioEssays 27:416–425, 2005. © 2005 Wiley periodicals, Inc. References 1 Crick FHC. 1968. The origin of the genetic code. J Mol Biol 38: 367– 379. 2 Sonneborn TM. 1965. Degeneracy of the genetic code, extent, nature and genetic implications. In: V Bryson, HJ Vogel. (ed) Evolving Genes and Proteins. New York: Academic Press. p 379– 397. 3 Woese CR, Dugre DH, Dugre SA, Kondo M, Saxinger WC. 1966. On the fundamental nature and evolution of the genetic code. Cold Spring Harbour Symp Quant Biol 31: 723– 736. 4 Jungck JR. 1978. The genetic code as a periodic table. J Mol Evol 11: 211– 224. 5 Figureau A. 1989. Optimization and the genetic code. Orig Life Evol Biosph 19: 57– 67. 6 Luo LF. 1989. The distribution of amino acids in the genetic code. Orig Life Evol Biosph 19: 621– 631. 7 Lacey JC Jr, Wickramasinghe NSMD, Cook GW. 1992. Experimental studies on the origin of the genetic code and the process of protein synthesis: a review update. Orig Life Evol Biosp 22: 243– 275. 8 Goldman N. 1993. Further results on error minimization in the genetic code. J Mol Evol 37: 662– 664. 9 Freeland SJ, Hurst LD. 1998. The genetic code is one in a million. J Mol Evol 47: 238– 248. 10 Freeland SJ, Wu T, Keulman N. 2003. The case for an error minimizing standard genetic code. Orig Life Evol Biosph 33: 457– 477. 11 Judson OP, Haydon D. 1999. The genetic code: what is it good for? An analysis of the effects of selection pressure on genetic codes. J Mol Evol 49: 539– 550. 12 Chiusano ML, Alvarez-Valin F, Di Giulio M, D'Onofrio G, Ammirato G, et al. 2000. Second codon positions of genes and the secondary structures of proteins. Relationships and implications for the origin of the genetic code. Gene 261: 63– 69. 13 Ardell DH, Sella G. 2002. No accident: genetic codes freeze in error-correcting patterns of the standard genetic code. Phil Trans R Soc London B 357: 1625– 1642. 14 Zhu CT, Zeng XB, Huang WD. 2003. Codon usage decreases the error minimization within the genetic code. J Mol Evol 57: 533– 537. 15 Pelc SR. 1965. Correlation between coding triplets and amino acids. Nature 207: 597– 599. 16 Dunnill P. 1966. Triplet nucleotide-amino acid pairing, a stereochemical basis for the division between protein and non-protein amino acids. Nature 215: 355– 359. 17 Melcher G. 1974. Stereospecificity of the genetic code. J Mol Evol 3: 121– 140. 18 Hendry LB, Bransome ED Jr, Hutson MS, Campbell LK. 1981. First approximation of a stereochemical rationale for the genetic code based on the topography and physicochemical properties of "cavities" constructed from models of DNA. Proc Natl Acad Sci USA 78: 7440– 7444. 19 Shimizu M. 1982. Molecular basis for the genetic code. J Mol Evol 18: 297– 303. 20 Yarus M. 1988. A specific amino acid binding site composed of RNA. Science 240: 1751– 1758. 21 Knight R, Landweber XX, Yarus M. 2003. Tests of a stereochemical genetic code. In J Lapointe, L Brakier-Gingras. (ed); Translation Mechanisms. Georgetown, Texas: Landes Bioscience. p 115– 129. 22 Seligmann H, Amzallag GN. 2002. Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code. Naturwissenschaften 89: 542– 551. 23 Jukes TH. 1973. Arginine as an evolutionary intruder into protein synthesis. Biochem Biophys Res Com 53: 709– 714. 24 Dillon LS. 1973. The origins of the genetic code. Bot Rev 39: 301– 345. 25 Wong JT. 1975. A coevolution theory of the genetic code. Proc Natl Acad Sci USA 72: 1909– 1912. 26 Wong JT. 1976. The evolution of a universal genetic code. Proc Natl Acad Sci USA 73: 2336– 2340. 27 Wong JT. 1981. Coevolution of the genetic code and amino acid biosynthesis. Trends Biochem Sci 6: 33– 35. 28 Wong JT. 1988. Evolution of the genetic code. Microbiol Sci 5: 174– 181. 29 McClendon JH. 1986. The relationship between the biosynthetic paths to the amino acids and their coding. I. the aliphatic amino acids and proline. Orig Life 17: 401– 417. 30 Danchin A. 1989. Homeotropic transformation and the origin of translation. Prog Biophys Mol Biol 54: 81– 86. 31 Di Giulio M. 1989. Some aspects of the organization and evolution of the genetic code. J Mol Evol 29: 191– 201. 32 Di Giulio M. 1996. The β-sheets of proteins, the biosynthetic relations between amino acids, and the origin of the genetic code. Origins Life Evol Biosph 26: 589– 609. 33 Di Giulio M, Medugno M. 1998. The historical factor: the biosynthetic relationships between amino acids and their physicochemical properties in the origin of the genetic code. J Mol Evol 46: 615– 621. 34 Di Giulio M. 2004. The coevolution theory of the origin of the genetic code. Phyics Life Rev 1: 128– 137. 35 Wachtershauser G. 1988. Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52: 452– 484. 36 Taylor FJR, Coates D. 1989. The code within the codons. BioSystems 22: 177– 187. 37 Edwards MR. 1996. Metabolite channeling in the origin of life. J Theor Biol 179: 313– 322. 38 Budisa N, Moroder L, Huber R. 1999. Structure and evolution of the genetic code viewed from the perspective of the experimentally expanded amino acid repertoire in vivo. CMLS Cell Mol Life Sci 55: 1626– 1635. 39 Bermudez CI, Daza EE, Andrade E. 1999. Characterization and comparison of Escherichia coli transfer RNAs by graph theory based on secondary structure. J Theoret Biol 197: 193– 205. 40 Stevenson DS. 2002. Co-evolution of the genetic code and ribozyme replication. J Theor Biol 217: 235– 253. 41 Cavalcanti AR, Leite ES, Neto BB, Ferreira R. 2004. On the classes of aminoacyl-tRNA synthetases, amino acids and the genetic code. Orig Life Evol Biosph 34: 407– 420. 42 Klipcan L, Safro MM. 2004. Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. J Theo Biol 228: 389– 396. 43 Eigen M, Schuster P. 1978. The hypercycle. A principle of natural self-organization. Naturwissenschaften 65: 341– 369. 44 Jurka J, Smith TF. 1987. β-turn driven early evolution: the genetic code and biosynthetic pathways. J Mol Evol 25: 15– 19. 45 Delarue M. 1995. Partition of aminoacyl-tRNA synthetases in two different structural classes dating back to early metabolism: implications for the origin of the genetic code and the nature of protein sequences. J Mol Evol 41: 703– 711. 46 Davis BK. 1999. Evolution of the genetic code. Prog Biophys Mol Biol 72: 157– 243. 47 Yang CM. 2004. Molecular versus atomic information logic behind the genetic coding contents constrained by two evolutionary axes and the Fibonacci-Lucas sequence. J Biol Systems 12: 21– 44. 48 Guimaraes RC, Moreira CHC. 2004. Genetic code: a self-referential and functional model. In G Palyi, C Zucchi, L Caglioti. (ed); Progress in Biological Chirality. Paris: Elsevier. p 83– 118. 49 Wong JT, Xue H. 2002. Self-perfecting evolution of heteropolymer building blocks and sequences as the basis of life. In G Palyi. C Zucchi, L Caglioti (eds); Fundamentals of Life. Paris: Elsevier. p 473– 494. 50 Wong JT, Bronskill PM. 1979. Inadequacy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol 13: 115– 125. 51 Kobayashi K, Tsuchiya M, Oshima T, Yanagawa H. 1990. Abiotic synthesis of amino acids and imidazole by proton irradiation of simulated primitive earth atmospheres. Orig Life Evol Biosph 20: 99– 109. 52 Kobayashi K, Kaneko T, Saito T, Oshima T. 1998. Amino acid formation in gas mixtures by high energy particle irradiation. Orig Life Evol Biosph 28: 155– 165. 53 Trifonov EN. 2000. Consensus temporal order of amino acids and evolution of the triplet code. Gene 261: 139– 151. 54 Wong JT. 1984. Evolution and mutation of the aminoacid code. In: J Ricard, A Cornish-Bowden. (eds). Dynamics of Biochemical Systems. New York: Plenum Press, p 247– 257. 55 Commans S, Bock A. 1999. Selenocysteine inserting tRNAs: an overview. FEMS Microb Rev 23: 335– 351. 56 Krzycki JA. 2004. Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opinion Chem Biol 8: 484– 491. 57 Polycarpo C, Ambrogelly A, Berube A, Winbush SM, McCloskey JA, et al. 2004. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci USA 101: 12450– 12444. 58 Roy H, Becker HD, Reinbolt J, Kern D. 2003. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc Natl Acad Sci USA 100: 9837– 9842. 59 Francklyn C. 2003. tRNA synthetase paralogs: evolutionary links in the transition from tRNA-dependent amino acid biosynthesis to de novo synthesis. Proc Natl Acad Sci USA 100: 9650– 9652. 60 Ibba M, Curnow AW, Soll D. 1997. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci 22: 39– 42. 61 Di Giulio M, Medugno M. 1999. Physicochemical optimization in the properties in the genetic code origin as the number of codified amino acids increases. J Mol Evol 49: 1– 10. 62 Di Giulio M, Medugno M. 2001. The level and landscape of optimization in the origin of the genetic code. J Mol Evol 52: 372– 382. 63 Amirnovin R. 1997. An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol 44: 473– 476. 64 Ronneberg TA, Landweber LF, Freeland SL. 2000. Testing a biosynthetic theory of the genetioc code: fact or artifact? Proc Natl Acad Sci USA 97: 13690– 13695. 65 Di Giulio M. 1999. The coevolution theory of the genetic code. J Mol Evol 48: 253– 255. 66 Di Giulio M, Medugno M. 2000. The robust statistical basis of the coevolution theory of genetic code origin. J Mol Evol 50: 258– 263. 67 Di Giulio M. 2001. A blind empiricism against the coevolution theory of the origin of the genetic code. J Mol Evol 53: 724– 732. 68 Siatecka M, Rozek M, Barciszewski J, Mirande M. 1998. Modular evolution of the Glx-tRNA synthetase family. Eur J Biochem 256: 80– 87. 69 Tumbula D, Vothknecht UC, Kim HS, Ibba M, Min B, et al. 1999. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma. Genetics 152: 1269– 1276. 70 Xue H, Tong KL, Marck C, Grosjean H, Wong JT. 2003. Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 310: 59– 66. 71 Freeland SJ, Knight RD, Landweber LF, Hurst LD. 2000. Early fixation of an optimal genetic code. Mol Biol Evol 17: 511– 518. 72 Moser J, Schubert W-D, Beier V, Bringemeier I, Jahn D, et al. 2001. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 23: 6583– 6590. 73 Manssant J, Verstreken P, Durbecq V, Kholti A, Legrain C, et al. 2002. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate. J Biol Chem 277: 18517– 18522. 74 Levy S, Danchin A. 1988. Phylogeny of metabolic pathways: O-acetylserine sulphydrylase A is homologous to the tryptophan synthase beta subunit. Molec Microb 2: 777– 783. 75 Pezo V, Metzgar D, Hendrickson TL, Waas WF, Hazebrouck S, et al. 2004. Artificially ambiguous genetic code confers growth yield advantage. Proc Natl Acad Sci USA 101: 8593– 8597. 76 Wong JT. 1983. Membership mutation of the genetic code: loss of fitness by tryptophan. Proc Natl Acad Sci USA 80: 6303– 6306. 77 Bronskill PM, Wong JT. 1988. Supression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan. Biochem J 249: 305– 308. 78 Bacher JM, Ellington AD. 2001. Selection and characterization of Escherichia coli variants capable of growth on an otherwise toxic tryptophan analogue. J Bacteriol 183: 5414– 5425. 79 Bacher JM, Bull JJ, Ellington AD. 2003. Evolution of phage with a chemically ambiguous proteome. BMC Evol Biol 3: 24. 80 Bacher JM, Hughes RA, Wong JT, Ellington AD. 2004. Evolving new genetic codes. Trends Ecol Evol 19: 69– 75. 81 Barrell BG, Bankier AT, Drouin J. 1979. A different genetic code in human mitochondria. Nature 282: 189– 194. 82 Bacher JM, Ellington AD. 2003. The directed evolution of organismic chemistry: unnatural amino acid incorporation. In J Lapointe, L Brakier-Gingras ed; Translation Mechanisms. Georgetown Texas: Landes Bioscience. p 80– 94. 83 Kowal AK, Kohrer C, RajBhandary UL. 2001. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci 98: 2268– 2273. 84 Magliery TJ, Pastrnak M, Anderson C, Santoro SW, Herberich B, et al. 2003. In vitro tools and in vivo engineering: incorporation of unnatural amino acids into proteins. In J Lapointe, L Brakier-Gingras. (ed); Translation Mechanisms. Georgetown Texas: Landes Bioscience. p 95– 114. 85 Kwok Y, Wong JT. 1980. Evolutionary relationship between Halobacterium cutirubrum and eukaryotes determined by use of aminoacyl-tRNA synthetases as phylogenetic probes. Can J Biochem 58: 213– 218. 86 Bock A. 2001. Invading the genetic code. Science 292: 453– 454. 87 Ibba M, Stathopoulos C, Soll D. 2001. Protein synthesis: twenty three amino acids and counting. Curr Biol 11: R563– 565. 88 Cohen P. 2000. Life the sequel. New Scientist 167: 32– 36. 89 Hesman T. 2000. Code breakers. Scientists are altering bacteria in a most fundamental way. Science News 157: 360– 362. 90 Wong JT. 1991. Origin of genetically encoded protein synthesis: a model based on selection for RNA peptidation. Orig Life Evol Biosph 21: 165– 176. 91 Szathmary E. 1999. The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet. 15: 223– 229. 92 Ibba M, Francklyn C. 2004. Turning tRNA upside down: when aminoacylation is not a prerequisite to protein synthesis. Proc Natl Acad Sci USA 101: 7493– 7494. 93 Maizels N, Weiner AM. 1999. The genomic tag hypothesis: what molecular fossils tell us about the evolution of tRNA. In RF Gesteland, TR Cech, JF Atkins. (ed); The RNA World. Cold Spinr Harbor, NY: Cold Spring Harbor Laboratory Press, p 79– 111. 94 Wong JT. 1981. The origin of the genetic code. Trends Biochem Sci 6: XIII. 95 Giege R, Sissler M, Florentz C. 1998. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 22: 5017– 5035. 96 Xue H, Shen W, Giege R, Wong JT. 1993. Identity elements of tRNATrp. Identification and evolutionary conservation. J Biol Chem 268: 9316– 9322. 97 Guo Q, Gong Q, Tong KL, Vestergaard B, Costa A, et al. 2002. Recognition by tryptophanyl-tRNA synthetases of discriminator base on tRNATrp from three biological domains. J Biol Chem 277: 14343– 14349. 98 Nagel GM, Doolittle RF. 1995. Phylogenetic analysis of the aminoacyl-tRNA synthetases. J Mol Evol 40: 487– 498. 99 Ribas de Pouplana L, Schimmel P. 2001. Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem Sci 26: 591– 596. 100 Wong JT. 1980. Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci USA 77: 1083– 1086. 101 Ellington AD, Khrapov M, Shaw CA. 2000. The scene of a frozen accident. RNA 6: 485– 498. 102 Wong JT. 1975. Kinetics of Enzyme Mechanisms. London: Academic Press. 201p. 103 Wolf YI, Rogozin IB, Grishin NV, Koonin EV. 2002. Genome trees and the tree of life. Trends in Genet 18: 472– 479. 104 Tong KL, Wong JT. 2004. Anticodon and wobble evolution. Gene 333: 169– 177. 105 Handy J, Doolittle RF. 1999. An attempt to pinpoint the phylogenetic introduction of glutaminyl-tRNA synthetase among bacteria. J Ml Evol 49: 709– 715. 106 Di Giulio M. 1995. The phylogeny of tRNAs seems to confirm the predictions of the coevolution theory of the origin of the genetic code. Orig Life Evol Biosph 25: 549– 564. 107 Chaley MB, Korotkov EV, Phoenix DA. Relationships among isoacceptor tRNAs seem to support the coevolution theory of the origin of the genetic code. J Mol Evol 48: 168– 177. 108 Di Giulio M. 2002. Genetic code origin: are the pathways of the type Glu-tRNAGln←Gln-tRNAGln molecular fossils or not? J Mol Evol 55: 616– 622. 109 Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, et al. 2004. Database resources of the National Center for Biotechnology Information: update. Nucl. Acid Res 32: D35– D40. 110 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25: 3389– 3402. Citing Literature Volume27, Issue4April 2005Pages 416-425 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX