Artigo Acesso aberto Revisado por pares

The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse

1994; Society for Neuroscience; Volume: 14; Issue: 2 Linguagem: Inglês

10.1523/jneurosci.14-02-00523.1994

ISSN

1529-2401

Autores

WG Regehr, KR Delaney, DW Tank,

Tópico(s)

Neural dynamics and brain function

Resumo

The mossy fiber synapse between dentate granule cells and CA3 pyramidal cells in the guinea pig hippocampus shows a robust short-term synaptic enhancement. We have simultaneously measured presynaptic residual free calcium ([Ca2+]i) and postsynaptic field potentials at this synapse to examine the role of [Ca2+]i in this enhancement. Single action potentials produced an increase in [Ca2+]i of 10-50 nM that decayed to resting levels with a time constant of about 1 sec. Trains of action potentials produced larger [Ca2+]i increases that returned more slowly to resting levels. Following the onset of moderate frequency stimulus trains (0.1-5 Hz), synaptic transmission and [Ca2+]i both increased and eventually plateaued. During the steady-state phase a linear relationship between [Ca2+]i and synaptic enhancement was observed. During the initial buildup, however, [Ca2+]i rose more rapidly than synaptic enhancement. Similarly, during the decay phase immediately following termination of a stimulus train, [Ca2+]i returned to prestimulus levels faster than synaptic enhancement. High concentrations of the calcium buffer EGTA in the presynaptic terminal slowed the buildup and decay of both [Ca2+]i and synaptic enhancement produced by stimulus trains. Under these conditions, the time course of [Ca2+]i and synaptic enhancement were well matched. This suggests that, despite the differences in kinetic rates observed for normal buffering conditions, increases in [Ca2+]i play a causal role in short-term enhancement. An increase in [Ca2+]i of 10-30 nM produced a twofold enhancement. We propose a simple kinetic model to explain these results. The model assumes that synaptic enhancement is controlled by a Ca-dependent first-order reaction. According to this scheme, a change in [Ca2+]i alters neurotransmitter release, but the slow kinetics of the underlying reaction introduces a temporal filter, producing a delay in the change in synaptic enhancement.

Referência(s)