Artigo Revisado por pares

THE FORMATION OF ORGANIC COMPOUNDS ON THE PRIMITIVE EARTH

1957; Wiley; Volume: 69; Issue: 2 Linguagem: Inglês

10.1111/j.1749-6632.1957.tb49662.x

ISSN

1749-6632

Autores

Stanley L. Miller,

Tópico(s)

Space Science and Extraterrestrial Life

Resumo

Annals of the New York Academy of SciencesVolume 69, Issue 2 p. 260-275 THE FORMATION OF ORGANIC COMPOUNDS ON THE PRIMITIVE EARTH Stanley L. Miller, Stanley L. Miller Department of Biochemistry, College of Physicians and Surgeons, Columbia University, New York, N. Y.Search for more papers by this author Stanley L. Miller, Stanley L. Miller Department of Biochemistry, College of Physicians and Surgeons, Columbia University, New York, N. Y.Search for more papers by this author First published: August 1957 https://doi.org/10.1111/j.1749-6632.1957.tb49662.xCitations: 120AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 ABELSON, P. H. 1956a. Amino acids formed in "primitive atmospheres." Science. 124: 935. 10.1126/science.124.3228.935 PubMedWeb of Science®Google Scholar 2 ABELSON, P. H. 1956b. Private communication. Google Scholar 3 BULEN, W. A., J. E. VARNER & R. C. BURRELL. 1952. Separation of organic acids from plant tissues. Anal. Chem. 24: 187. 10.1021/ac60061a038 CASWeb of Science®Google Scholar 4 CARESS, A. & E. K. RIDEAL. 1928. The chemical reactions of carbon monoxide and hydrogen after collision with electrons. Proc. Roy. Soc. London. A120: 370. 10.1098/rspa.1928.0155 Google Scholar 5 GARRISON, W. M., D. C. MORRISON, J. G. HAMILTON, A. A. BENSON & M. CALVIN. 1951. Reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science. 114: 416. 10.1126/science.114.2964.416 CASPubMedWeb of Science®Google Scholar 6 GARRISON, W. M. & G. K. ROLLEFSON. 1952. Radiation chemistry of aqueous solutions containing both ferrous ion and carbon dioxide. Discussions Faraday Soc. 12: 155. 10.1039/df9521200155 Google Scholar 7 GLOCKLER, G. & S. C. LIND. 1939. Electrochemistry of Gases and other Dielectrics. Wiley & Sons. New York , N. Y. Google Scholar 8 GROTH, W. 1937. Photochemische Üntersuchungen im Schumann-ultraviolet. IV. Z. physik. Chem. B37: 315. CASGoogle Scholar 9 JACKSON, D. S. & H. I. SCHIFF. 1955. Mass spectrometric investigation of active nitrogen. J. Chem. Phys. 23: 2333. 10.1063/1.1741875 CASWeb of Science®Google Scholar 10 LAPPIN, G. R. & L. C. CLARK. 1951. Colorimetric method for determination of traces of carbonyl compounds. Anal. Chem. 23: 541. 10.1021/ac60051a050 CASWeb of Science®Google Scholar 11 MIGRDICHIAN, V. 1947. The Chemistry of Organic Cyanogen Compounds. : 5. Reinhold. New York , N. Y. Google Scholar 12 MILAS, N. A., L. E. STAHL & B. B. DAYTON. 1949. Reactions of hydroxyl radicals with organic compounds. J. Am. Chem. Soc. 71: 1448. 10.1021/ja01172a086 CASWeb of Science®Google Scholar 13 MILLER, S. L. 1953. A production of amino acids under possible primitive earth conditions. Science. 117: 528. 10.1126/science.117.3046.528 CASPubMedWeb of Science®Google Scholar 14 MILLER, S. L. 1955. Production of some organic compounds under possible primitive earth conditions. J. Am. Chem. Soc. 77: 2351. 10.1021/ja01614a001 CASWeb of Science®Google Scholar 15 MILLER, S. L. 1957. The mechanism of synthesis of amino acids by electric discharges. Biochim. et Biophys. Acta. 23: 48D. 10.1016/0006-3002(57)90366-9 Web of Science®Google Scholar 16 NEIDIG, B. A. & W. C. HESS. 1952. Simultaneous estimation of threonine and serine. Anal. Chem. 24: 1627. 10.1021/ac60070a034 CASWeb of Science®Google Scholar 17 NOYES, W. A., JR. & P. A. LEIGHTON. 1941. The Photochemistry of Gases. Reinhold. New York , N. Y. Google Scholar 18 OPARIN, A. I. 1938. The Origin of Life. Macmillan. (Republished by Dover, 1953.) New York , N. Y. Google Scholar 19 PALIT, C. C, & N. R. DHAR. 1930. Photochemical oxidation by air. J. Phys. Chem. 34: 993. 10.1021/j150311a007 CASGoogle Scholar 20 RABINOWITCH, E. I. 1945. Photosynthesis. 1: 81. Interscience. New York , N. Y. Google Scholar 21 RENSE, W. A. 1953. Intensity of the Lyman-alpha line in the solar spectrum. Phys. Rev. 91: 299. 10.1103/PhysRev.91.299 CASWeb of Science®Google Scholar 22 RUBEY, W. W. 1955. Development of the hydrosphere and atmosphere with special reference to the probable composition of the early atmosphere. Geol. Soc. Am. Spec. Papers. 62: 631. 10.1130/SPE62-p631 CASGoogle Scholar 23 STEIN, W. H. & S. MOORE. 1949. Chromatographic determination of the amino acid composition of proteins. Cold Spring Harbor Symposia Quant. Biol. 14: 179. 10.1101/SQB.1950.014.01.022 CASWeb of Science®Google Scholar 24 STORCH, H. H., N. GOLUMBIC & R. B. ANDERSON. 1951. The Fischer-Tropsch and Related Syntheses. Wiley & Sons. New York , N. Y. Google Scholar 25 TAYLOR, H. S. 1926. Photosensitization and the mechanism of chemical reactions. Trans. Faraday Soc. 21: 560. 10.1039/tf9262100560 Google Scholar 26 UREY, H. C. 1952a. The Planets. Yale Univ. Press. New Haven, Conn . Google Scholar 27 UREY, H. C. 1952b. On the early chemical history of the earth and the origin of life. Proc. Natl. Acad. Sci. U. S. 38: 351. 10.1073/pnas.38.4.351 CASPubMedWeb of Science®Google Scholar 28 WALL, J. S. 1953. Simultaneous separation of purines, pyrimidines, amino acids and other nitrogenous compounds. Anal. Chem. 25: 950. 10.1021/ac60078a029 CASWeb of Science®Google Scholar 29 WARBURG, O. 1949. Heavy Metal Prosthetic Groups and Enzyme Action. : 38. Oxford Univ. Press. Oxford, England . Google Scholar 30 WIELAND, T., J. FRANZ & G. PFLEIDERER. 1955. Über die Bildung von Aminosaüren aus α-Keto-aldehyden. Chem. Ber. 88: 641. 10.1002/cber.19550880508 CASWeb of Science®Google Scholar 31 WIELAND, T. & F. JAENICKE. 1955. Der Mechanismus der oxydo-reduktiven Aminierung von α-Keto-aldehyden. Chem. Ber. 88: 1967. 10.1002/cber.19550881224 CASWeb of Science®Google Scholar 32 WILDE, K. A., B. T. ZWOLINSKI & R. B. PARLIN. 1953. The reaction occurring in CO2-H2O mixtures in a high-frequency electric arc. Science. 118: 43. 10.1126/science.118.3054.43-a CASPubMedWeb of Science®Google Scholar 33 WINKLER, C. A. & H. I. SCHIFF. 1953. Reactions of active nitrogen. Discussions Faraday Soc. 14: 63. 10.1039/df9531400063 Google Scholar 34 YATES, W. F. & R. L. HEIDER. 1952. The dissociation of lactonitrile in aqueous solution. J. Am. Chem. Soc. 74: 4153. 10.1021/ja01136a058 CASWeb of Science®Google Scholar 1 RUBEY, W. W. 1951. Geologic history of sea water. Bull. Geol. Soc. Am. 62: 1111–1148. 10.1130/0016-7606(1951)62[1111:GHOSW]2.0.CO;2 CASWeb of Science®Google Scholar Citing Literature Volume69, Issue2Modern Ideas on Spontaneous GenerationAugust 1957Pages 260-275 ReferencesRelatedInformation

Referência(s)