Artigo Acesso aberto Revisado por pares

Deficiency or inhibition of lysophosphatidic acid receptor 1 protects against hyperoxia-induced lung injury in neonatal rats

2015; Wiley; Volume: 216; Issue: 3 Linguagem: Inglês

10.1111/apha.12622

ISSN

1748-1716

Autores

Xu Chen, Frans J. Walther, Ruben van Boxtel, El Houari Laghmani, Rozemarijn M. A. Sengers, Gert Folkerts, Marco C. DeRuiter, Edwin Cuppen, Gerry T. M. Wagenaar,

Tópico(s)

Respiratory Support and Mechanisms

Resumo

Acta PhysiologicaVolume 216, Issue 3 p. 358-375 Original Article Deficiency or inhibition of lysophosphatidic acid receptor 1 protects against hyperoxia-induced lung injury in neonatal rats X. Chen, X. Chen Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorF. J. Walther, F. J. Walther Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USASearch for more papers by this authorR. van Boxtel, R. van Boxtel Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences and University Medical Center Utrecht, Utrecht, the NetherlandsSearch for more papers by this authorE. H. Laghmani, E. H. Laghmani Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorR. M. A. Sengers, R. M. A. Sengers Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorG. Folkerts, G. Folkerts Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the NetherlandsSearch for more papers by this authorM. C. DeRuiter, M. C. DeRuiter Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorE. Cuppen, E. Cuppen Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences and University Medical Center Utrecht, Utrecht, the NetherlandsSearch for more papers by this authorG. T. M. Wagenaar, Corresponding Author G. T. M. Wagenaar Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands Correspondence: G. T. M. Wagenaar, PhD, Division of Neonatology, Department of Pediatrics, P3-P30, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands. E-mail: [email protected]Search for more papers by this author X. Chen, X. Chen Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorF. J. Walther, F. J. Walther Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USASearch for more papers by this authorR. van Boxtel, R. van Boxtel Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences and University Medical Center Utrecht, Utrecht, the NetherlandsSearch for more papers by this authorE. H. Laghmani, E. H. Laghmani Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorR. M. A. Sengers, R. M. A. Sengers Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorG. Folkerts, G. Folkerts Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the NetherlandsSearch for more papers by this authorM. C. DeRuiter, M. C. DeRuiter Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the NetherlandsSearch for more papers by this authorE. Cuppen, E. Cuppen Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences and University Medical Center Utrecht, Utrecht, the NetherlandsSearch for more papers by this authorG. T. M. Wagenaar, Corresponding Author G. T. M. Wagenaar Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands Correspondence: G. T. M. Wagenaar, PhD, Division of Neonatology, Department of Pediatrics, P3-P30, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands. E-mail: [email protected]Search for more papers by this author First published: 23 October 2015 https://doi.org/10.1111/apha.12622Citations: 14Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Aim Blocking of lysophosphatidic acid (LPA) receptor (LPAR) 1 may be a novel therapeutic option for bronchopulmonary dysplasia (BPD) by preventing the LPAR1-mediated adverse effects of its ligand (LPA), consisting of lung inflammation, pulmonary arterial hypertension (PAH) and fibrosis. Methods In Wistar rats with experimental BPD, induced by continuous exposure to 100% oxygen for 10 days, we determined the beneficial effects of LPAR1 deficiency in neonatal rats with a missense mutation in cytoplasmic helix 8 of LPAR1 and of LPAR1 and -3 blocking with Ki16425. Parameters investigated included survival, lung and heart histopathology, fibrin and collagen deposition, vascular leakage and differential mRNA expression in the lungs of key genes involved in LPA signalling and BPD pathogenesis. Results LPAR1-mutant rats were protected against experimental BPD and mortality with reduced alveolar septal thickness, lung inflammation (reduced influx of macrophages and neutrophils, and CINC1 expression) and collagen III deposition. However, LPAR1-mutant rats were not protected against alveolar enlargement, increased medial wall thickness of small arterioles, fibrin deposition and vascular alveolar leakage. Treatment of experimental BPD with Ki16425 confirmed the data observed in LPAR1-mutant rats, but did not reduce the pulmonary influx of neutrophils, CINC1 expression and mortality in rats with experimental BPD. In addition, Ki16425 treatment protected against PAH and right ventricular hypertrophy. Conclusion LPAR1 deficiency attenuates pulmonary injury by reducing pulmonary inflammation and fibrosis, thereby reducing mortality, but does not affect alveolar and vascular development and, unlike Ki16425 treatment, does not prevent PAH in neonatal rats with experimental BPD. Supporting Information Filename Description apha12622-sup-0001-FigureS1.pptapplication/mspowerpoint, 763 KB Figure S1. Transfection efficiency is similar between wild-type and mutant LPAR1 expressing plasmids. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References Abman, S.H. 2009. Role of endothelin receptor antagonists in the treatment of pulmonary arterial hypertension. Annu Rev Med 60, 13–23. Baraldi, E. & Filippone, M. 2007. Chronic lung disease after premature birth. N Engl J Med 357, 1946–1955. van Boxtel, R., Gould, M.N., Cuppen, E. & Smits, B.M. 2010. ENU mutagenesis to generate genetically modified rat models. Methods Mol Biol 597, 151–167. van Boxtel, R., Vroling, B., Toonen, P., Nijman, I.J., van Roekel, H., Verheul, M., Baakman, C., Guryev, V., Vriend, G. & Cuppen, E. 2011. Systematic generation of in vivo G protein-coupled receptor mutants in the rat. Pharmacogenomics J 11, 326–336. Cheng, H.Y., Dong, A., Panchatcharam, M., Mueller, P., Yang, F., Li, Z., Mills, G., Chun, J., Morris, A.J. & Smyth, S.S. 2012. Lysophosphatidic acid signaling protects pulmonary vasculature from hypoxia-induced remodeling. Arterioscler Thromb Vasc Biol 32, 24–32. Choi, J.W., Herr, D.R., Noguchi, K., Yung, Y.C., Lee, C.W., Mutoh, T., Lin, M.E., Teo, S.T., Park, K.E., Mosley, A.N. & Chun, J. 2010. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50, 157–186. Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D. & Chun, J. 2000. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 97, 13384–13389. Cummings, R., Zhao, Y., Jacoby, D., Spannhake, E.W., Ohba, M., Garcia, J.G., Watkins, T., He, D., Saatian, B. & Natarajan, V. 2004. Protein kinase Cdelta mediates lysophosphatidic acid-induced NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem 279, 41085–41094. Felipe, S.A., Rodrigues, E.S., Martin, R.P., Paiva, A.C., Pesquero, J.B. & Shimuta, S.I. 2007. Functional expression of kinin B1 and B2 receptors in mouse abdominal aorta. Braz J Med Biol Res 40, 649–655. Gehret, A.U., Jones, B.W., Tran, P.N., Cook, L.B., Greuber, E.K. & Hinkle, P.M. 2010. Role of helix 8 of the thyrotropin-releasing hormone receptor in phosphorylation by G protein-coupled receptor kinase. Mol Pharmacol 77, 288–297. Japp, A.G. & Newby, D.E. 2008. The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol 75, 1882–1892. Jiang, J.S., Lang, Y.D., Chou, H.C., Shih, C.M., Wu, M.Y., Chen, C.M. & Wang, L.F. 2012. Activation of the renin-angiotensin system in hyperoxia-induced lung fibrosis in neonatal rats. Neonatology 101, 47–54. Jobe, A.H. 1999. The new BPD: an arrest of lung development. Pediatr Res 46, 641–643. Lang, Y.D., Hung, C.L., Wu, T.Y., Wang, L.F. & Chen, C.M. 2010. The renin-angiotensin system mediates hyperoxia-induced collagen production in human lung fibroblasts. Free Radic Biol Med 49, 88–95. Lin, M.E., Herr, D.R. & Chun, J. 2010. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91, 130–138. Moolenaar, W.H., van Meeteren, L.A. & Giepmans, B.N. 2004. The ins and outs of lysophosphatidic acid signaling. BioEssays 26, 870–881. Obi, T., Kabeyama, A. & Nishio, A. 1994. Characterization of muscarinic receptor subtype mediating contraction and relaxation in equine coronary artery in vitro. J Vet Pharmacol Ther 17, 226–231. Oikonomou, N., Mouratis, M.A., Tzouvelekis, A., Kaffe, E., Valavanis, C., Vilaras, G., Karameris, A., Prestwich, G.D., Bouros, D. & Aidinis, V. 2012. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 47, 566–574. Park, G.Y., Lee, Y.G., Berdyshev, E., Nyenhuis, S., Du, J., Fu, P., Gorshkova, I.A., Li, Y., Chung, S., Karpurapu, M. et al. 2013. Autotaxin production of lysophosphatidic acid mediates allergic asthmatic inflammation. Am J Respir Crit Care Med 188, 928–940. Porzionato, A., Sfriso, M.M., Mazzatenta, A., Macchi, V., De Caro, R. & Di Giulio, C. 2015. Effects of hyperoxic exposure on signal transduction pathways in the lung. Respir Physiol Neurobiol 209, 106–114. Pyne, N.J., Dubois, G. & Pyne, S. 2013. Role of sphingosine 1-phosphate and lysophosphatidic acid in fibrosis. Biochim Biophys Acta 1831, 228–238. Rancoule, C., Pradère, J.P., Gonzalez, J., Klein, J., Valet, P., Bascands, J.L., Schanstra, J.P. & Saulnier-Blache, J.S. 2011. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin Investig Drugs 20, 657–667. Ruisanchez, É., Dancs, P., Kerék, M., Németh, T., Faragó, B., Balogh, A., Patil, R., Jennings, B.L., Liliom, K., Malik, K.U., Smrcka, A.V., Tigyi, G. & Benyó, Z. 2014. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. FASEB J 28, 880–890. Saatian, B., Zhao, Y., He, D., Georas, S.N., Watkins, T., Spannhake, E.W. & Natarajan, V. 2006. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem J 393, 657–668. Schober, A. & Siess, W. 2012. Lysophosphatidic acid in atherosclerotic diseases. Br J Pharmacol 167, 465–482. Shea, B.S. & Tager, A.M. 2012. Role of the lysophospholipid mediators lysophosphatidic acid and sphingosine 1-phosphate in lung fibrosis. Proc Am Thorac Soc 9, 102–110. Simon, D.M., Tsai, L.W., Ingenito, E.P., Starcher, B.C. & Mariani, T.J. 2010. PPARgamma deficiency results in reduced lung elastic recoil and abnormalities in airspace distribution. Respir Res 11, 69. Steinhorn, R.H. 2010. Neonatal pulmonary hypertension. Pediatr Crit Care Med 11, S79–S84. Stortelers, C., Kerkhoven, R. & Moolenaar, W.H. 2008. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genom 9, 387. Swaney, J.S., Chapman, C., Correa, L.D., Stebbins, K.J., Bundey, R.A., Prodanovich, P.C., Fagan, P., Baccei, C.S., Santini, A.M., Hutchinson, J.H., Seiders, T.J., Parr, T.A., Prasit, P., Evans, J.F. & Lorrain, D.S. 2010. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol 160, 1699–1713. Tager, A.M., LaCamera, P., Shea, B.S., Campanella, G.S., Selman, M., Zhao, Z., Polosukhin, V., Wain, J., Karimi-Shah, B.A., Kim, N.D. et al. 2008. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 14, 45–54. Toews, M.L., Ediger, T.L., Romberger, D.J. & Rennard, S.I. 2002. Lysophosphatidic acid in airway function and disease. Biochim Biophys Acta 1582, 240–250. Tokumura, A., Fukuzawa, K. & Tsukatani, H. 1978. Effects of synthetic and natural lysophosphatidic acids on the arterial blood pressure of different animal species. Lipids 13, 572–574. Tokumura, A., Yotsumoto, T., Masuda, Y. & Tanaka, S. 1995. Vasopressor effect of lysophosphatidic acid on spontaneously hypertensive rats and Wistar Kyoto rats. Res Commun Mol Pathol Pharmacol 90, 96–102. Tuder, R.M., Abman, S.H., Braun, T., Capron, F., Stevens, T., Thistlethwaite, P.A. & Haworth, S.G. 2009. Development and pathology of pulmonary hypertension. J Am Coll Cardiol 54, S3–S9. de Visser, Y.P., Walther, F.J., Laghmani, E.H., Boersma, H., van der Laarse, A. & Wagenaar, G.T.M. 2009. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respir Res 10, 30. de Visser, Y.P., Walther, F.J., Laghmani, E.H., van der Laarse, A. & Wagenaar, G.T.M. 2010. Apelin attenuates hyperoxic lung and heart injury in neonatal rats. Am J Respir Crit Care Med 182, 1239–1250. de Visser, Y.P., Walther, F.J., Laghmani, E.H., Steendijk, P., Middeldorp, M., van der Laarse, A. & Wagenaar, G.T.M. 2012. Phosphodiesterase-4 inhibition attenuates persistent heart and lung injury by neonatal hyperoxia in rats. Am J Physiol Lung Cell Mol Physiol 302, L56–L67. Wagenaar, G.T.M., ter Horst, S.A., van Gastelen, M.A., Leijser, L.M., Mauad, T., van der Velden, P.A., de Heer, E., Hiemstra, P.S., Poorthuis, B.J. & Walther, F.J. 2004. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med 36, 782–801. Wagenaar, G.T.M., Laghmani, E.H., de Visser, Y.P., Sengers, R.M., Steendijk, P., Baelde, H.J. & Walther, F.J. 2013. Ambrisentan reduces pulmonary arterial hypertension, but does not stimulate alveolar and vascular development in neonatal rats with hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 304, L264–L275. Yi, M., Jankov, R.P., Belcastro, R., Humes, D., Copland, I., Shek, S., Sweezey, N.B., Post, M., Albertine, K.H., Auten, R.L. & Tanswell, A.K. 2004. Opposing effects of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat. Am J Respir Crit Care Med 170, 1188–1196. Zhao, Y. & Natarajan, V. 2013. Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. Biochim Biophys Acta 1831, 86–92. Zhao, J., He, D., Su, Y., Berdyshev, E., Chun, J., Natarajan, V. & Zhao, Y. 2011. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs. Am J Physiol Lung Cell Mol Physiol 301, L547–L556. Zhao, J., Wei, J., Weathington, N., Jacko, A.M., Huang, H., Tsung, A. & Zhao, Y. 2015. Lysophosphatidic acid receptor 1 antagonist ki16425 blunts abdominal and systemic inflammation in a mouse model of peritoneal sepsis. Transl Res 166, 80–88. Citing Literature Volume216, Issue3March 2016Pages 358-375 ReferencesRelatedInformation

Referência(s)