Estimating fish community diversity from environmental features in the Tagus estuary (Portugal): Multiple Linear Regression and Artificial Neural Network approaches
2008; Wiley; Volume: 24; Issue: 2 Linguagem: Inglês
10.1111/j.1439-0426.2007.01039.x
ISSN1439-0426
AutoresJuan Carlos Gutiérrez‐Estrada, Rita P. Vasconcelos, María José Costa,
Tópico(s)Hydrological Forecasting Using AI
ResumoJournal of Applied IchthyologyVolume 24, Issue 2 p. 150-162 Estimating fish community diversity from environmental features in the Tagus estuary (Portugal): Multiple Linear Regression and Artificial Neural Network approaches J. C. Gutiérrez-Estrada, J. C. Gutiérrez-Estrada Departamento de Ciencias Agroforestales, Escuela Politécnica Superior, Campus Universitario de La Rábida, Universidad de Huelva, Palos de la Frontera, Huelva, SpainSearch for more papers by this authorR. Vasconcelos, R. Vasconcelos Instituto de Oceanografia/Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, PortugalSearch for more papers by this authorM. J. Costa, M. J. Costa Instituto de Oceanografia/Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, PortugalSearch for more papers by this author J. C. Gutiérrez-Estrada, J. C. Gutiérrez-Estrada Departamento de Ciencias Agroforestales, Escuela Politécnica Superior, Campus Universitario de La Rábida, Universidad de Huelva, Palos de la Frontera, Huelva, SpainSearch for more papers by this authorR. Vasconcelos, R. Vasconcelos Instituto de Oceanografia/Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, PortugalSearch for more papers by this authorM. J. Costa, M. J. Costa Instituto de Oceanografia/Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, PortugalSearch for more papers by this author First published: 04 February 2008 https://doi.org/10.1111/j.1439-0426.2007.01039.xCitations: 31Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Summary Relationships between environmental variables and diversity (Shannon-Weaver index) of the fish communities in the Tagus estuary and adjacent coastal areas were analyzed. The focus was on the linearity or nonlinearity of these abiotic/biotic characteristics, with the aim to obtain an accurate short–medium term time-scale diversity prediction from habitat variables alone. Multiple Linear Regressions (MLR) were used for the linear approach and Artificial Neural Networks (ANNs) for the nonlinear approach. MLR results in the external validation phase indicated a lack of model accuracy (R2 = 0.0710; %SEP = 47.5868; E = −0.0217; ARV = 1.0217; N = 43). Results of the best of the Artificial Neural Networks used in this study (12-15-15-1 architecture) in the external validation phase (ANN: R2 = 0.9736; %SEP = 7.8499; E = 0.9722; ARV = 0.0278; N = 43) were more accurate than those obtained with MLR. This indicates a clear nonlinear relationship between variables. In the best ANN model, nitrate concentration, depth, dissolved oxygen and temperature were the most important predictors of fish diversity in the Tagus estuary. The sensibility analysis indicated that the remaining variables (silicate, nitrite, transparency, salinity, slope, phosphate, water particulate organic matter, and chlorophyll a) played lesser roles in the model. References Anctil, F.; Rat, A., 2005: Evaluation of neural network streamflow forecasting on 47 watersheds. J. Hydrol. Eng. 10, 85– 88. Angermeier, P. L.; Winston, M. R., 1998: Local vs. regional influences on local diversity in stream fish communities of Virginia. Ecology 79, 911– 927. Attrill, M. J., 2002: A testable linear model for diversity trends in estuaries. J. Anim. Ecol. 71, 262– 269. Attrill, M. J.; Power, M., 2004: Partitioning of temperature resources amongst an estuarine fish assemblage. Estuar. Coast. Shelf Sci. 61, 725– 738. Baeta, F.; Pinheiro, A.; Corte-Real, M.; Costa, J. L.; Raposo de Almeida, P.; Cabral, H.; Costa, M. J., 2005: Are the fisheries in the Tagus estuary sustainable? Fish. Res. 76, 243– 251. Baran, P.; Lek, S.; Delacoste, M.; Belaud, A., 1996: Stochastic models that predict trout population densities or biomass on macrohabitat scale. Hydrobiologia 337, 1– 9. Brosse, S.; Lek, S.; Townsend, C. R., 2001: Abundance, diversity, and structure of freshwater invertebrates and fish communities: an artificial neural network approach. N. Z. J. Mar. Freshw. Res. 35, 135– 145. Brown, J. H.; Morgan-Ernest, S. K.; Parody, J. M.; Haskell, J. P., 2001: Regulation of diversity: maintenance of species richness in changing environments. Oecologia 126, 321– 332. Cabral, H. N.; Costa, M. J.; Salgado, J. P., 2001: Does the Tagus estuary fish community reflect environmental changes? Clim. Change 18, 119– 126. Cleresci, L. S.; Greenberg, A. E.; Trussell, R., 1989: Standard methods for the examination of water and wastewater. American Public Health Association, American Waterworks Association, Water Pollution Control Federation, Washington, DC, 2134 pp. Costa, M. J.; Elliott, M., 1991: A fish usage and feeding in two industrialised estuaries – the Tagus, Portugal, and Forth, Scotland. In: Estuaries and coast: spatial and temporal intercomparisons. H. Elliot & J. P. Ducrotoy (Eds). Olsen and Olsen, Fredensborg, Denmark, pp. 289– 297. Elliott, M.; Hemingway, K., 2002: Fishes in estuaries. Blackwell Science, Oxford, 636 pp. Elliott, M.; O'Reilly, M. G.; Taylor, C. J. L., 1990: The Forth estuary: a nursery and overwintering area for North Sea fishes. Hydrobiologia 195, 89– 103. Flannery, M. S.; Peebles, E. B.; Montgomery, R. T., 2002: A percent-of-flow approach for managing reductions of freshwater inflows from unimpounded rivers to southwest Florida estuaries. Estuaries 25, 1318– 1332. Govindajaru, R. S., 2000: Artificial neural networks in hydrology: I. Preliminary concepts. J. Hydrol. Eng. 5, 115– 123. Gozlan, R. E.; Mastrorillo, S.; Copp, G. H.; Lek, S., 1999: Predicting the structure and diversity of young-of-the-year fish assemblages in large rivers. Freshw. Biol. 41, 809– 820. Grasshoff, K.; Kremling, K.; Ehrhardt, M., 1999: Methods of seawater analysis. Wiley-VCH, Weinheim, 600 pp. Griñó, R., 1992: Neural networks for univariate time series forecasting and their application to water demand prediction. Neural Netw World 2, 437– 450. Guégan, J. F.; Lek, S.; Oberdorff, T., 1998: Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382– 384. Guisan, A.; Zimmermann, N. E., 2000: Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147– 186. Gutiérrez-Estrada, J. C.; Pulido-Calvo, I.; Prenda, J., 2000: Gonadosomatic index estimates of an introduced pumpkinseed (Lepomis gibbosus) population in a Mediterranean stream, using computational neural networks. Aquat. Sci. 62, 350– 363. Gutiérrez-Estrada, J. C.; De-Pedro-Sanz, E.; López-Luque, R.; Pulido-Calvo, I., 2004: Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system. Aquacult. Eng. 31, 183– 203. Henderson, P. A., 1988: The structure of estuarine fish communities. J. Fish Biol. 33, 223– 225. Henderson, P. A.; Holmes, R. H. A., 1991: On the population dynamics of dab, sole and flounder within Bridgewater Bay in the lower Severn estuary, England. Neth. J. Sea Res. 27, 337– 344. Hunnam, P.; Milne, A.; Stebbing, P., 1982: El acuario vivo. Agua dulce y salada. Libros del Carballo, Madrid, 240 pp. Hunter, A.; Kennedy, L.; Henry, J.; Ferguson, I., 2000: Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput. Methods Programs Biomed. 62, 11– 19. ITGE, 1994: Mapa geológico de la Península Ibérica, Baleares y Canarias. Instituto Tecnológico Geominero de España e Instituto Geológico e Mineiro de Portugal, Madrid. Kitanidis, P. K.; Bras, R. L., 1980: Real time forecasting with a conceptual hydrological model: 2. Applications and results. Water Resour. Res. 16, 1034– 1044. Kupschus, S., 2004: A temperature-dependent reproductive model for spotted seatrout (Cynoscion nebulosus) explaining spatio-temporal variations in reproduction and young-of-the-year recruitment in Florida estuaries. J. Mar. Sci. 61, 3– 11. Kupschus, S.; Tremain, D., 2001: Associations between fish assemblages and environmental factors in nearshore habitats of a subtropical estuary. J. Fish Biol. 58, 1383– 1403. Lappalainen, A.; Shurukhin, A.; Gregory, A.; Jukka, R., 2000: Coastal fish communities along the northern coast of the Gulf of Finland, Baltic sea: responses to salinity and eutrophication. Int. Rev. Hydrobiol. 85, 687– 696. Lek, S.; Belaud, A.; Baran, P.; Dimopoulos, I.; Delacoste, M., 1996a: Role of some environmental variables in trout abundant models using neural networks. Aquat. Living Resour. 9, 23– 29. Lek, S.; Delacoste, M.; Baran, P.; Dimopoulos, I.; Lauga, J.; Aulanier, S., 1996b: Application of neural networks to modelling non-linear relationships in ecology. Ecol. Modell. 90, 39– 52. Lek-Ang, S.; Deharveng, L.; Lek, S., 1999: Predictive models of collembolan diversity and abundance in a riparian habitat. Ecol. Modell. 120, 247– 260. Lekve, K.; Stenseth, N. C.; Gjöæter, J., 2003: Regulation of species richness by advection and richness-dependent processes in a coastal fish community. Hydrobiologia 503, 93– 102. MacArthur, R. H., 1972: Geographical ecology. Harper and Row, New York, 269 pp. MacArthur, R. H.; Reicher, H.; Cody, M. L., 1996: On the relation between habitat selection and bird species diversity. Am. Nat. 100, 319– 332. Maes, J.; Van Damme, P. A.; Taillieu, A.; Ollevier, F., 1998: Fish communities along an oxygen-poor salinity gradient (Zeeschelde estuary, Belgium). J. Fish Biol. 52, 534– 546. Maes, J.; Van Damme, S.; Meire, P.; Ollevier, F., 2004: Statistical modeling of seasonal and environmental influences on the population dynamics of an estuarine fish community. Mar. Biol. 145, 1033– 1042. Margalef, R., 1968: Perspectives in ecology theory. Univ. Chicago Press, Chicago, 111 pp. Marshall, S.; Elliott, M., 1998: Environmental influences on the fish assemblage of the Humber estuary, U.K. Estuar. Coast. Shelf Sci. 46, 175– 184. Müller, B.; Reinhardt, J., 1990: Artificial Neural Networks: electronic implementations. Springer-Verlag, Berlin. Oberdorff, T.; Guégan, J. F.; Hugueny, B., 1995: Global scale patterns of fish species richness in rivers. Ecography 18, 345– 352. Paperno, R.; Brodie, R. B., 2004: Effects of environmental variables upon the spatial and temporal structure of a fish community in a small, freshwater tributary of the Indian River Lagoon, Florida. Estuar. Coast. Shelf Sci. 61, 229– 241. Persson, L.; Diehl, S.; Johansson, L.; Andersson, G.; Hamrin, S. F., 1991: Shifts in fish communities along productivity gradient of temperature lakes – patterns and importance of size-structured interactions. J. Fish Biol. 38, 281– 293. Potter, I. C.; Claridge, P. N.; Warwick, R. M., 1986: Consistency of seasonal changes in an estuarine fish assemblage. Mar. Ecol.-Prog. Ser. 32, 217– 228. Power, M.; Attrill, M. J., 2002: Factors affecting long-term trends in the estuarine abundance of pogge (Agonus catapharactus). Estuar. Coast. Shelf Sci. 54, 941– 949. Power, M.; Attrill, M. J., 2003: Long-term trends in the estuarine abundance of Nilsson's pipefish (Syngnathus rostellatus Nilson). Estuar. Coast. Shelf Sci. 57, 325– 333. Power, M.; Attrill, M. J.; Thomas, R. M., 2000a: Environmental factors and interactions affecting the temporal abundance of juvenile flatfish in the Thames estuary. J. Sea Res. 43, 135– 149. Power, M.; Attrill, M. J.; Thomas, R. M., 2000b: Temporal abundance patterns and growth of juvenile herring and sprat from the Thames estuary 1977–1992. J. Fish Biol. 56, 1408– 1426. Power, M.; Attrill, M. J.; Thomas, R. M., 2002: Environmental influences on the long-term fluctuations in the abundance of gadoid species during estuarine residence. J. Sea Res. 47, 185– 194. Poxton, M. G.; Allouse, S. B., 1982: Water quality criteria for marine fisheries. Aquacult. Eng. 1, 153– 191. Prista, N.; Vasconcelos, R. P.; Costa, M. J.; Cabral, H., 2003: The demersal fish assemblage of the coastal area adjacent to the Tagus estuary (Portugal): relationships with environmental conditions. Oceanol. Acta 26, 525– 536. Qi, M.; Zhang, G. P., 2001: An investigation of model selection criteria for neural network time series forecasting. Eur. J. Oper. Res. 132, 666– 680. Rosenzweig, M. L., 1991: Habitat selection and population interactions: the search for mechanism. Am. Nat. 137, 5– 28. Rumelhart, D. E.; Hinton, G. E.; Williams, R. J., 1986: 'Learning' representations by back propagation errors. Nature 323, 533– 536. Schoener, T. W., 1983: Field experiments on interspecific competition. Am. Nat. 122, 240– 285. Shepherd, A. J., 1997: Second-order methods for neural networks. Springer, New York, 208 pp. Stenseth, N. C.; Lekve, K.; Gjöæter, J., 2002: Modeling species richness controlled by community-intrinsic and community-extrinsic processes: coastal fish communities as an example. Popul. Ecol. 44, 165– 178. Tan, Y.; Van Cauwenberghe, A., 1999: Neural-network-based d-step-ahead predictors for nonlinear systems with time delay. Eng. Appl. Artif. Intell. 12, 21– 25. Thiel, R.; Sepúlveda, A.; Kafemann, R.; Nellen, W., 1995: Environmental factors as forces structuring the fish community of the Elbe Estuary. J. Fish Biol. 46, 47– 69. Thorman, S., 1986: Seasonal colonization and effects of salinity and temperature on species richness and abundance of fish of some brackish and estuarine shallow waters in Sweden. Holartic Ecol. 9, 126– 132. Tilman, D., 1982: Resource competition and community structure. Monography population biology, vol. 17. Princeton University, Princeton, NJ, pp. 296. Tsoukalas, L. H.; Uhrig, R. E., 1997: Fuzzy and neural approaches in engineering. Wiley Interscience, New York, 587 pp. Vega-Cendejas, M. E.; Hernández-de-Santillana, M., 2004: Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatán, Mexico. Estuar. Coast. Shelf Sci. 60, 285– 299. Ventura, S.; Silva, M.; Pérez-Bendito, D.; Hervás, C., 1995: Artificial neural networks for estimation of kinetic analytical parameters. Anal. Chem. 67, 1521– 1525. Vinagre, C.; França, S.; Costa, M. J.; Cabral, H. N., 2004: Accumulation of heavy metals by flounder Platichthys flesus (Linnaeus 1758), in a heterogeneously contaminated nursery area. Mar. Pollut. Bull. 49, 1109– 1126. Whitfield, K. A., 1999: Ichthyofaunal assemblages in estuaries: a South African case study. Rev. Fish Biol. Fish. 9, 151– 186. Citing Literature Volume24, Issue2April 2008Pages 150-162 ReferencesRelatedInformation
Referência(s)