Double step branching CORDIC: a new algorithm for fast sine and cosine generation
1998; Institute of Electrical and Electronics Engineers; Volume: 47; Issue: 5 Linguagem: Inglês
10.1109/12.677251
ISSN2326-3814
Autores Tópico(s)Computational Physics and Python Applications
ResumoDuprat and Muller (1993) introduced the ingenious "Branching CORDIC" algorithm. It enables a fast implementation of CORDIC algorithm using signed digits and requires a constant normalization factor. The speedup is achieved by performing two basic CORDIC rotations in parallel in two separate modules. In their method, both modules perform identical computation except when the algorithm is in a "branching" [1]. We have improved the algorithm and show that it is possible to perform two circular mode rotations in a single step, with little additional hardware. In our method, both modules perform distinct computations at each step which leads to a better utilization of the hardware and the possibility of further speedup over the original method. Architectures for VLSI implementation of our algorithm are discussed.
Referência(s)