Management of multidrug-resistant organisms in health care settings, 2006
2007; Elsevier BV; Volume: 35; Issue: 10 Linguagem: Inglês
10.1016/j.ajic.2007.10.006
ISSN1527-3296
AutoresJane D. Siegel, Emily Rhinehart, Marguerite M. Jackson, Linda A. Chiarello,
Tópico(s)Bacterial Identification and Susceptibility Testing
ResumoMultidrug-resistant organisms (MDROs), including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and certain gram-negative bacilli (GNB) have important infection control implications that either have not been addressed or received only limited consideration in previous isolation guidelines. Increasing experience with these organisms is improving understanding of the routes of transmission and effective preventive measures. Although transmission of MDROs is most frequently documented in acute care facilities, all health care settings are affected by the emergence and transmission of antimicrobial-resistant microbes. The severity and extent of disease caused by these pathogens varies by the population(s) affected and by the institution(s) in which they are found. Institutions, in turn, vary widely in physical and functional characteristics, ranging from long-term care facilities (LTCF) to specialty units (eg, intensive care units [ICU], burn units, neonatal ICUs [NICUs]) in tertiary care facilities. Because of this, the approaches to prevention and control of these pathogens need to be tailored to the specific needs of each population and individual institution. The prevention and control of MDROs is a national priority—one that requires that all health care facilities and agencies assume responsibility.1IOM.in: Harrison P.F. Lederberg J. National Academy Press, Washington, DC1998: 8-74Google Scholar, 2Shlaes D.M. Gerding D.N. John Jr., J.F. Craig W.A. Bornstein D.L. Duncan R.A. et al.Infect Control Hosp Epidemiol. 1997; 18: 275-291Crossref PubMed Google Scholar The following discussion and recommendations are provided to guide the implementation of strategies and practices to prevent the transmission of MRSA, VRE, and other MDROs. The administration of health care organizations and institutions should ensure that appropriate strategies are fully implemented, regularly evaluated for effectiveness, and adjusted such that there is a consistent decrease in the incidence of targeted MDROs. Successful prevention and control of MDROs require administrative and scientific leadership and a financial and human resource commitment.3Larson E.L. Early E. Cloonan P. Sugrue S. Parides M. Behav Med. 2000; 26: 14-22Crossref PubMed Google Scholar, 4Goldmann D.A. Weinstein R.A. Wenzel R.P. Tablan O.C. Duma R.J. Gaynes R.P. et al.JAMA. 1996; 275: 234-240Crossref PubMed Google Scholar, 5Murthy R. Chest. 2001; 119: S405-S411Crossref PubMed Google Scholar Resources must be made available for infection prevention and control, including expert consultation, laboratory support, adherence monitoring, and data analysis. Infection prevention and control professionals have found that health care personnel (HCP) are more receptive and adherent to the recommended control measures when organizational leaders participate in efforts to reduce MDRO transmission.3Larson E.L. Early E. Cloonan P. Sugrue S. Parides M. Behav Med. 2000; 26: 14-22Crossref PubMed Google Scholar For epidemiologic purposes, MDROs are defined as microorganisms, predominantly bacteria, that are resistant to 1 or more classes of antimicrobial agents.1IOM.in: Harrison P.F. Lederberg J. National Academy Press, Washington, DC1998: 8-74Google Scholar Although the names of certain MDROs describe resistance to only 1 agent (eg, MRSA, VRE), these pathogens are frequently resistant to most available antimicrobial agents. These highly resistant organisms deserve special attention in health care facilities.2Shlaes D.M. Gerding D.N. John Jr., J.F. Craig W.A. Bornstein D.L. Duncan R.A. et al.Infect Control Hosp Epidemiol. 1997; 18: 275-291Crossref PubMed Google Scholar In addition to MRSA and VRE, certain GNB, including those producing extended spectrum β-lactamases (ESBLs) and others that are resistant to multiple classes of antimicrobial agents, are of particular concern. (Multidrug-resistant strains of Mycobacterium tuberculosis are not addressed in this document because of the markedly different patterns of transmission and spread of the pathogen and the very different control interventions that are needed for prevention of M tuberculosis infection. Current recommendations for prevention and control of tuberculosis can be found at: http://www.cdc.gov/mmwr/pdf/rr/rr5417.pdf.) In addition to Escherichia coli and Klebsiella pneumoniae, these include strains of Acinetobacter baumannii resistant to all antimicrobial agents, or all except imipenem,6Mahgoub S. Ahmed J. Glatt A.E. Infect Control Hosp Epidemiol. 2002; 23: 477-479Crossref PubMed Google Scholar, 7Fournier P.E. Richet H. Clin Infect Dis. 2006; 42: 692-699Crossref PubMed Scopus (270) Google Scholar, 8Fierobe L. Lucet J.C. Decre D. Muller-Serieys C. Deleuze A. Joly-Guillou M.L. et al.Infect Control Hosp Epidemiol. 2001; 22: 35-40Crossref PubMed Google Scholar, 9Ling M.L. Ang A. Wee M. Wang G.C. Infect Control Hosp Epidemiol. 2001; 22: 48-49Crossref PubMed Google Scholar, 10Landman D. Quale J.M. Mayorga D. Adedeji A. Vangala K. Ravishankar J. et al.Arch Intern Med. 2002; 162: 1515-1520Crossref PubMed Google Scholar, 11Urban C. Segal-Maurer S. Rahal J.J. Clin Infect Dis. 2003; 36: 1268-1274Crossref PubMed Scopus (149) Google Scholar, 12Gales A.C. Jones R.N. Forward K.R. Linares J. Sader H.S. Verhoef J. Clin Infect Dis. 2001; 32: S104-S113Crossref PubMed Google Scholar and organisms such as Stenotrophomonas maltophilia,12Gales A.C. Jones R.N. Forward K.R. Linares J. Sader H.S. Verhoef J. Clin Infect Dis. 2001; 32: S104-S113Crossref PubMed Google Scholar, 13del Toro M.D. Rodriguez-Bano J. Herrero M. Rivero A. Garcia-Ordonez M.A. Corzo J. et al.Medicine (Baltimore). 2002; 81: 228-239Crossref PubMed Scopus (37) Google Scholar, 14Hanes S.D. Demirkan K. Tolley E. Boucher B.A. Croce M.A. Wood G.C. et al.Clin Infect Dis. 2002; 35: 228-235Crossref PubMed Scopus (80) Google Scholar Burkholderia cepacia,15Saiman L. Siegel J. Infect Control Hosp Epidemiol. 2003; 24: S6-S52Crossref PubMed Google Scholar, 16Loukil C. Saizou C. Doit C. Bidet P. Mariani-Kurkdjian P. Aujard Y. et al.Infect Control Hosp Epidemiol. 2003; 24: 707-710Crossref PubMed Scopus (15) Google Scholar and Ralstonia pickettii17Ryan M.P. Pembroke J.T. Adley C.C. J Hosp Infect. 2006; 62: 278-284Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar that are intrinsically resistant to the broadest spectrum antimicrobial agents. In some residential settings (eg, LTCFs), it is important to control multidrug-resistant Streptococcus pneumoniae (MDRSP) that are resistant to penicillin and other broad-spectrum agents such as macrolides and fluroquinolones.18Fry A.M. Udeagu C.C. Soriano-Gabarro M. Fridkin S. Musinski D. LaClaire L. et al.Infect Control Hosp Epidemiol. 2005; 26: 239-247Crossref PubMed Scopus (14) Google Scholar, 19Carter R.J. Sorenson G. Heffernan R. Kiehlbauch J.A. Kornblum J.S. Leggiadro R.J. et al.Infect Control Hosp Epidemiol. 2005; 26: 248-255Crossref PubMed Scopus (16) Google Scholar Strains of S aureus that have intermediate susceptibility or are resistant to vancomycin (ie, vancomycin-intermediate S aureus [VISA], vancomycin-resistant S aureus [VRSA])20Whitener C.J. Park S.Y. Browne F.A. Parent L.J. Julian K. Bozdogan B. et al.Clin Infect Dis. 2004; 38: 1049-1055Crossref PubMed Scopus (93) Google Scholar, 21CDC MMWR Morb Mortal Wkly Rep. 1997; 46: 765-766PubMed Google Scholar, 22CDC MMWR Morb Mortal Wkly Rep. 2002; 51: 565-567PubMed Google Scholar, 23CDC MMWR Morb Mortal Wkly Rep. 2002; 51: 902PubMed Google Scholar, 24CDC MMWR Morb Mortal Wkly Rep. 2004; 53: 322-323PubMed Google Scholar, 25Chang S. Sievert D.M. Hageman J.C. Boulton M.L. Tenover F.C. Downes F.P. et al.N Engl J Med. 2003; 348: 1342-1347Crossref PubMed Scopus (615) Google Scholar, 26Fridkin S.K. Hageman J. McDougal L.K. Mohammed J. Jarvis W.R. Perl T.M. et al.Clin Infect Dis. 2003; 36: 429-439Crossref PubMed Scopus (217) Google Scholar, 27Hageman J.C. Fridkin S.K. Mohammed J.M. Steward C.D. Gaynes R.P. Tenover F.C. Infect Control Hosp Epidemiol. 2003; 24: 356-361Crossref PubMed Scopus (19) Google Scholar, 28Rotun S.S. McMath V. Schoonmaker D.J. Maupin P.S. Tenover F.C. Hill B.C. et al.Emerg Infect Dis. 1999; 5: 147-149Crossref PubMed Google Scholar, 29Smith T.L. Pearson M.L. Wilcox K.R. Cruz C. Lancaster M.V. Robinson-Dunn B. et al.N Engl J Med. 1999; 340: 493-501Crossref PubMed Scopus (825) Google Scholar, 30Srinivasan A. Dick J.D. Perl T.M. Clin Microbiol Rev. 2002; 15: 430-438Crossref PubMed Scopus (141) Google Scholar have affected specific populations, such as hemodialysis patients. In most instances, MDRO infections have clinical manifestations that are similar to infections caused by susceptible pathogens. However, options for treating patients with these infections are often extremely limited. For example, until recently, only vancomycin provided effective therapy for potentially life-threatening MRSA infections, and, during the 1990s, there were virtually no antimicrobial agents to treat infections caused by VRE. Although antimicrobials are now available for treatment of MRSA and VRE infections, resistance to each new agent has already emerged in clinical isolates.31Gonzales R.D. Schreckenberger P.C. Graham M.B. Kelkar S. DenBesten K. Quinn J.P. Lancet. 2001; 357: 1179Abstract Full Text Full Text PDF PubMed Scopus (392) Google Scholar, 32Soltani M. Beighton D. Philpott-Howard J. Woodford N. Antimicrob Agents Chemother. 2001; 45: 645-646Crossref PubMed Scopus (17) Google Scholar, 33Pai M.P. Rodvold K.A. Schreckenberger P.C. Gonzales R.D. Petrolatti J.M. Quinn J.P. Clin Infect Dis. 2002; 35: 1269-1272Crossref PubMed Scopus (74) Google Scholar, 34Pillai S.K. Sakoulas G. Wennersten C. Eliopoulos G.M. Moellering Jr., R.C. Ferraro M.J. et al.J Infect Dis. 2002; 186: 1603-1607Crossref PubMed Scopus (105) Google Scholar, 35Hershberger E. Donabedian S. Konstantinou K. Zervos M.J. Clin Infect Dis. 2004; 38: 92-98Crossref PubMed Scopus (71) Google Scholar, 36Mangili A. Bica I. Snydman D.R. Hamer D.H. Clin Infect Dis. 2005; 40: 1058-1060Crossref PubMed Scopus (177) Google Scholar, 37Sabol K. Patterson J.E. Lewis II, J.S. Owens A. Cadena J. Jorgensen J.H. Antimicrob Agents Chemother. 2005; 49: 1664-1665Crossref PubMed Scopus (95) Google Scholar Similarly, therapeutic options are limited for ESBL-producing isolates of gram-negative bacilli, strains of A baumannii resistant to all antimicrobial agents except imipenem,8Fierobe L. Lucet J.C. Decre D. Muller-Serieys C. Deleuze A. Joly-Guillou M.L. et al.Infect Control Hosp Epidemiol. 2001; 22: 35-40Crossref PubMed Google Scholar, 9Ling M.L. Ang A. Wee M. Wang G.C. Infect Control Hosp Epidemiol. 2001; 22: 48-49Crossref PubMed Google Scholar, 10Landman D. Quale J.M. Mayorga D. Adedeji A. Vangala K. Ravishankar J. et al.Arch Intern Med. 2002; 162: 1515-1520Crossref PubMed Google Scholar, 11Urban C. Segal-Maurer S. Rahal J.J. Clin Infect Dis. 2003; 36: 1268-1274Crossref PubMed Scopus (149) Google Scholar, 38Simor A.E. Lee M. Vearncombe M. Jones-Paul L. Barry C. Gomez M. et al.Infect Control Hosp Epidemiol. 2002; 23: 261-267Crossref PubMed Google Scholar and intrinsically resistant Stenotrophomonas species.12Gales A.C. Jones R.N. Forward K.R. Linares J. Sader H.S. Verhoef J. Clin Infect Dis. 2001; 32: S104-S113Crossref PubMed Google Scholar, 13del Toro M.D. Rodriguez-Bano J. Herrero M. Rivero A. Garcia-Ordonez M.A. Corzo J. et al.Medicine (Baltimore). 2002; 81: 228-239Crossref PubMed Scopus (37) Google Scholar, 14Hanes S.D. Demirkan K. Tolley E. Boucher B.A. Croce M.A. Wood G.C. et al.Clin Infect Dis. 2002; 35: 228-235Crossref PubMed Scopus (80) Google Scholar, 39Clarke N.M. Patterson J. Lynch I.J. Curr Opin Crit Care. 2003; 9 (413–3)Google Scholar These limitations may influence antibiotic usage patterns in ways that suppress normal flora and create a favorable environment for development of colonization when exposed to potential MDR pathogens (ie, selective advantage).40Martone W.J. Infect Control Hosp Epidemiol. 1998; 19: 539-545Crossref PubMed Google Scholar Increased lengths of stay, costs, and mortality also have been associated with MDROs.41The Brooklyn Antibiotic Task Force.Infect Control Hosp Epidemiol. 2002; 23: 106-108Crossref PubMed Google Scholar, 42Wilson S.J. Knipe C.J. Zieger M.J. Gabehart K.M. Goodman J.E. Volk H.M. et al.Am J Infect Control. 2004; 32: 342-344Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar, 43Qavi A. Segal-Maurer S. Mariano N. Urban C. Rosenberg C. Burns J. et al.Infect Control Hosp Epidemiol. 2005; 26: 63-68Crossref PubMed Scopus (10) Google Scholar, 44Song X. Srinivasan A. Plaut D. Perl T.M. Infect Control Hosp Epidemiol. 2003; 24: 251-256Crossref PubMed Scopus (66) Google Scholar, 45Aloush V. Navon-Venezia S. Seigman-Igra Y. Cabili S. Carmeli Y. Antimicrob Agents Chemother. 2006; 50: 43-48Crossref PubMed Scopus (167) Google Scholar, 46Cosgrove S.E. Clin Infect Dis. 2006; 42: S82-S89Crossref PubMed Scopus (247) Google Scholar Two studies documented increased mortality, hospital lengths of stay, and hospital charges associated with multidrug-resistant gram-negative bacilli (MDR-GNBs), including a NICU outbreak of ESBL-producing Klebsiella pneumoniae47Stone P.W. Gupta A. Loughrey M. Della-Latta P. Cimiotti J. Larson E. et al.Infect Control Hosp Epidemiol. 2003; 24: 601-606Crossref PubMed Scopus (50) Google Scholar and the emergence of third-generation cephalosporin resistance in Enterobacter species in hospitalized adults.48Cosgrove S.E. Kaye K.S. Eliopoulous G.M. Carmeli Y. Arch Intern Med. 2002; 162: 185-190Crossref PubMed Google Scholar Vancomycin resistance has been reported to be an independent predictor of death from enterococcal bacteremia.44Song X. Srinivasan A. Plaut D. Perl T.M. Infect Control Hosp Epidemiol. 2003; 24: 251-256Crossref PubMed Scopus (66) Google Scholar, 49Linden P.K. Pasculle A.W. Manez R. Kramer D.J. Fung J.J. Pinna A.D. et al.Clin Infect Dis. 1996; 22: 663-670Crossref PubMed Google Scholar, 50Vergis E.N. Hayden M.K. Chow J.W. Snydman D.R. Zervos M.J. Linden P.K. et al.Ann Intern Med. 2001; 135: 484-492Crossref PubMed Google Scholar, 51Salgado C.D. Farr B.M. Infect Control Hosp Epidemiol. 2003; 24: 690-698Crossref PubMed Scopus (78) Google Scholar, 52DiazGranados C.A. Jernigan J.A. J Infect Dis. 2005; 191: 588-595Crossref PubMed Scopus (65) Google Scholar, 53DiazGranados C.A. Zimmer S.M. Klein M. Jernigan J.A. Clin Infect Dis. 2005; 41: 327-333Crossref PubMed Scopus (145) Google Scholar Furthermore, VRE was associated with increased mortality, length of hospital stay, admission to the ICU, surgical procedures, and costs when VRE patients were compared with a matched hospital population.54Carmeli Y. Eliopoulos G. Mozaffari E. Samore M. Arch Intern Med. 2002; 162: 2223-2228Crossref PubMed Scopus (124) Google Scholar However, MRSA may behave differently from other MDROs. When patients with MRSA have been compared with patients with methicillin-susceptible S aureus (MSSA), MRSA-colonized patients more frequently develop symptomatic infections.55Davis K.A. Stewart J.J. Crouch H.K. Florez C.E. Hospenthal D.R. Clin Infect Dis. 2004; 39: 776-782Crossref PubMed Scopus (275) Google Scholar, 56Muder R.R. Brennen C. Wagener M.M. Vickers R.M. Rihs J.D. Hancock G.A. et al.Ann Intern Med. 1991; 114: 107-112Crossref PubMed Google Scholar Furthermore, higher case fatality rates have been observed for certain MRSA infections, including bacteremia,57Cosgrove S.E. Sakoulas G. Perencevich E.N. Schwaber M.J. Karchmer A.W. Carmeli Y. Clin Infect Dis. 2003; 36: 53-59Crossref PubMed Scopus (977) Google Scholar, 58Melzer M. Eykyn S.J. Gransden W.R. Chinn S. Clin Infect Dis. 2003; 37: 1453-1460Crossref PubMed Scopus (150) Google Scholar, 59Selvey L.A. Whitby M. Johnson B. Infect Control Hosp Epidemiol. 2000; 21: 645-648Crossref PubMed Google Scholar, 60Romero-Vivas J. Rubio M. Fernandez C. Picazo J.J. Clin Infect Dis. 1995; 21: 1417-1423Crossref PubMed Google Scholar, 61Blot S.I. Vandewoude K.H. Hoste E.A. Colardyn F.A. Arch Intern Med. 2002; 162: 2229-2235Crossref PubMed Scopus (263) Google Scholar, 62Reed S.D. Friedman J.Y. Engemann J.J. Griffiths R.I. Anstrom K.J. Kaye K.S. et al.Infect Control Hosp Epidemiol. 2005; 26: 175-183Crossref PubMed Scopus (121) Google Scholar poststernotomy mediastinitis,63Mekontso-Dessap A. Kirsch M. Brun-Buisson C. Loisance D. Clin Infect Dis. 2001; 32: 877-883Crossref PubMed Scopus (73) Google Scholar and surgical site infections.64Engemann J.J. Carmeli Y. Cosgrove S.E. Fowler V.G. Bronstein M.Z. Trivette S.L. et al.Clin Infect Dis. 2003; 36: 592-598Crossref PubMed Scopus (499) Google Scholar These outcomes may be a result of delays in the administration of vancomycin, the relative decrease in the bactericidal activity of vancomycin,65Jones R.N. Clin Infect Dis. 2006; 42: S13-S24Crossref PubMed Scopus (152) Google Scholar or persistent bacteremia associated with intrinsic characteristics of certain MRSA strains.66Fowler Jr., V.G. Sakoulas G. McIntyre L.M. Meka V.G. Arbeit R.D. Cabell C.H. et al.J Infect Dis. 2004; 190: 1140-1149Crossref PubMed Scopus (127) Google Scholar Mortality may be increased further by S aureus with reduced vancomycin susceptibility (VISA).26Fridkin S.K. Hageman J. McDougal L.K. Mohammed J. Jarvis W.R. Perl T.M. et al.Clin Infect Dis. 2003; 36: 429-439Crossref PubMed Scopus (217) Google Scholar, 67Woods C.W. Cheng A.C. Fowler Jr., V.G. Moorefield M. Frederick J. et al.Clin Infect Dis. 2004; 38: 1188-1191Crossref PubMed Scopus (39) Google Scholar Also, some studies have reported an association between MRSA infections and increased length of stay, and health care costs,46Cosgrove S.E. Clin Infect Dis. 2006; 42: S82-S89Crossref PubMed Scopus (247) Google Scholar, 61Blot S.I. Vandewoude K.H. Hoste E.A. Colardyn F.A. Arch Intern Med. 2002; 162: 2229-2235Crossref PubMed Scopus (263) Google Scholar, 62Reed S.D. Friedman J.Y. Engemann J.J. Griffiths R.I. Anstrom K.J. Kaye K.S. et al.Infect Control Hosp Epidemiol. 2005; 26: 175-183Crossref PubMed Scopus (121) Google Scholar whereas others have not.64Engemann J.J. Carmeli Y. Cosgrove S.E. Fowler V.G. Bronstein M.Z. Trivette S.L. et al.Clin Infect Dis. 2003; 36: 592-598Crossref PubMed Scopus (499) Google Scholar Finally, some hospitals have observed an increase in the overall occurrence of staphylococcal infections following the introduction of MRSA into a hospital or special care unit.68Jernigan J.A. Clemence M.A. Stott G.A. Titus M.G. Alexander C.H. Palumbo C.M. et al.Infect Control Hosp Epidemiol. 1995; 16: 686-696Crossref PubMed Google Scholar, 69Stamm A.M. Long M.N. Belcher B. Am J Infect Control. 1993; 21: 70-74Abstract Full Text PDF PubMed Google Scholar Prevalence of MDROs varies temporally, geographically, and by health care setting.70Harbarth S. Albrich W. Goldmann D.A. Huebner J. Lancet Infect Dis. 2001; 1: 251-261Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 71Zinn C.S. Westh H. Rosdahl V.T. Microb Drug Resist. 2004; 10: 160-168Crossref PubMed Scopus (54) Google Scholar For example, VRE emerged in the eastern United States in the early 1990s but did not appear in the western United States until several years later, and MDRSP varies in prevalence by state.72Whitney C.G. Farley M.M. Hadler J. Harrison L.H. Lexau C. Reingold A. et al.N Engl J Med. 2000; 343: 1917-1924Crossref PubMed Scopus (673) Google Scholar The type and level of care also influence the prevalence of MDROs. ICUs, especially those at tertiary care facilities, may have a higher prevalence of MDRO infections than do non-ICU settings.73Kollef M.H. Fraser V.J. Ann Intern Med. 2001; 134: 298-314Crossref PubMed Google Scholar, 74Fridkin S.K. Crit Care Med. 2001; 29: N64-N68Crossref PubMed Google Scholar Antimicrobial resistance rates are also strongly correlated with hospital size, tertiary-level care, and facility type (eg, LTCF).75Diekema D.J. Boots Miller B.J. Vaughn T.E. Woolson R.F. Yankey J.W. Ernst E.J. et al.Clin Infect Dis. 2004; 38: 78-85Crossref PubMed Scopus (181) Google Scholar, 76Polgreen P.M. Beekmann S.E. Chen Y.Y. Doern G.V. Pfaller M.A. Brueggemann A.B. et al.Infect Control Hosp Epidemiol. 2006; 27: 252-256Crossref PubMed Scopus (10) Google Scholar The frequency of clinical infection caused by these pathogens is low in LTCFs.77Bradley S.F. Terpenning M.S. Ramsey M.A. Zarins L.T. Jorgensen K.A. Sottile W.S. et al.Ann Intern Med. 1991; 115: 417-422Crossref PubMed Google Scholar, 78Brennen C. Wagener M.M. Muder R.R. J Am Geriatr Soc. 1998; 46: 157-160Crossref PubMed Google Scholar Nonetheless, MDRO infections in LTCFs can cause serious disease and mortality, and colonized or infected LTCF residents may serve as reservoirs and vehicles for MDRO introduction into acute care facilities.78Brennen C. Wagener M.M. Muder R.R. J Am Geriatr Soc. 1998; 46: 157-160Crossref PubMed Google Scholar, 79Strausbaugh L.J. Crossley K.B. Nurse B.A. Thrupp L.D. Infect Control Hosp Epidemiol. 1996; 17: 129-140Crossref PubMed Google Scholar, 80Bradley S.F. Infect Control Hosp Epidemiol. 1999; 20: 362-366Crossref PubMed Scopus (50) Google Scholar, 81Bradley S.F. Am J Med. 1999; 106 (discussion S48–S52): S2-S10Abstract Full Text Full Text PDF PubMed Google Scholar, 82Wiener J. Quinn J.P. Bradford P.A. Goering R.V. Nathan C. Bush K. et al.JAMA. 1999; 281: 517-523Crossref PubMed Scopus (326) Google Scholar, 83McNeil S.A. Mody L. Bradley S.F. Geriatrics. 2002; 57: 16-27PubMed Google Scholar, 84Pacio G.A. Visintainer P. Maguire G. Wormser G.P. Raffalli J. Montecalvo M.A. Infect Control Hosp Epidemiol. 2003; 24: 246-250Crossref PubMed Scopus (37) Google Scholar, 85Rahimi A.R. J Am Geriatr Soc. 1998; 46: 1555-1557PubMed Google Scholar, 86Trick W.E. Weinstein R.A. DeMarais P.L. Tomaska W. Nathan C. McAllister S.K. et al.J Am Geriatr Soc. 2004; 52: 2003-2009Crossref PubMed Scopus (28) Google Scholar, 87Ben-Ami R. Schwaber M.J. Navon-Venezia S. Schwartz D. Giladi M. Chmelnitsky I. et al.Clin Infect Dis. 2006; 42: 925-934Crossref PubMed Scopus (165) Google Scholar, 88Elizaga M.L. Weinstein R.A. Hayden M.K. Clin Infect Dis. 2002; 34: 441-446Crossref PubMed Scopus (31) Google Scholar Another example of population differences in prevalence of target MDROs is in the pediatric population. Point prevalence surveys conducted by the Pediatric Prevention Network (PPN) in 8 US pediatric ICUs and 7 US NICUs in 2000 found that ≤4% of patients were colonized with MRSA or VRE compared with 10% to 24% who were colonized with ceftazidime- or aminoglycoside-resistant gram-negative bacilli; 50% of S aureus isolates from patients in ICUs in the National Nosocomial Infection Surveillance (NNIS) system; in 2003, 59.5% of S aureus isolates in NNIS ICUs were MRSA.93NNIS Am J Infect Control. 2003; 31: 481-498Abstract Full Text Full Text PDF PubMed Scopus (481) Google Scholar A similar rise in prevalence has occurred with VRE.94Fridkin S.K. Edwards J.R. Courval J.M. Hill H. Tenover F.C. Lawton R. et al.Ann Intern Med. 2001; 135: 175-183Crossref PubMed Google Scholar From 1990 to 1997, the prevalence of VRE in enterococcal isolates from hospitalized patients increased from <1% to approximately 15%.95Jones R.N. Chest. 2001; 119: S397-S404Crossref PubMed Google Scholar VRE accounted for almost 25% of enterococcus isolates in NNIS ICUs in 199994Fridkin S.K. Edwards J.R. Courval J.M. Hill H. Tenover F.C. Lawton R. et al.Ann Intern Med. 2001; 135: 175-183Crossref PubMed Google Scholar and 28.5% in 2003.93NNIS Am J Infect Control. 2003; 31: 481-498Abstract Full Text Full Text PDF PubMed Scopus (481) Google Scholar GNB resistant to ESBLs, fluoroquinolones, carbapenems, and aminoglycosides also have increased in prevalence. For example, in 1997, the SENTRY Antimicrobial Surveillance Program found that, among K pneumoniae strains isolated in the United States, resistance rates to ceftazidime and other third-generation cephalosporins were 6.6%, 9.7%, 5.4%, and 3.6% for bloodstream, pneumonia, wound, and urinary tract infections, respectively.95Jones R.N. Chest. 2001; 119: S397-S404Crossref PubMed Google Scholar In 2003, 20.6% of all K pneumoniae isolates from NNIS ICUs were resistant to these drugs.93NNIS Am J Infect Control. 2003; 31: 481-498Abstract Full Text Full Text PDF PubMed Scopus (481) Google Scholar Similarly, between 1999 and 2003, Pseudomonas aeruginosa resistance to fluoroquinolone antibiotics increased from 23% to 29.5% in NNIS ICUs.74Fridkin S.K. Crit Care Med. 2001; 29: N64-N68Crossref PubMed Google Scholar Also, a 3-month survey of 15 Brooklyn hospitals in 1999 found that 53% of A baumannii strains exhibited resistance to carbapenems and that 24% of P aeruginosa strains were resistant to imipenem.10Landman D. Quale J.M. Mayorga D. Adedeji A. Vangala K. Ravishankar J. et al.Arch Intern Med. 2002; 162: 1515-1520Crossref PubMed Google Scholar During 1994-2000, a national review of ICU patients in 43 states found that the overall susceptibility to ciprofloxacin decreased from 86% to 76% and was temporally associated with increased use of fluoroquinolones in the United States.96Neuhauser M.M. Weinstein R.A. Rydman R. Danziger L.H. Karam G. Quinn J.P. JAMA. 2003; 289: 885-888Crossref PubMed Scopus (434) Google Scholar Last, an analysis of temporal trends of antimicrobial resistance in non-ICU patients in 23 US hospitals during 1996-1997 and 1998-199997Fridkin S.K. Hill H.A. Volkova N.V. Edwards J.R. Lawton R.M. Gaynes R.P. et al.Emerg Infect Dis. 2002; 8: 697-701Crossref PubMed Google Scholar found significant increases in the prevalence of resistant isolates including MRSA, ciprofloxacin-resistant P aeruginosa, and ciprofloxacin- or ofloxacin-resistant E coli. Several factors may have contributed to these increases including the following: selective pressure exerted by exposure to antimicrobial agents, particularly fluoroquinolones, outside of the ICU and/or in the community7Fournier P.E. Richet H. Clin Infect Dis. 2006; 42: 692-699Crossref PubMed Scopus (270) Google Scholar, 96Neuhauser M.M. Weinstein R.A. Rydman R. Danziger L.H. Karam G. Quinn J.P. JAMA. 2003; 289: 885-888Crossref PubMed Scopus (434) Google Scholar, 98Madaras-Kelly K.J. Remington R.E. Lewis P.G. Stevens D.L. Infect Control Hosp Epidemiol. 2006; 27: 155-169Crossref PubMed Scopus (41) Google Scholar; increasing rates of community-associated MRSA colonization and infection99Fridkin S.K. Hageman J.C. Morrison M. Sanza L.T. Como-Sabetti K. Jernigan J.A. et al.N Engl J Med. 2005; 352: 1436-1444Crossref PubMed Scopus (924) Google Scholar, 100Kuehnert M.J. Kruszon-Moran D. Hill H.A. McQuillan G. McAllister S.K. Fosheim G. et al.J Infect Dis. 2006; 193: 172-179Crossref PubMed Scopus (326) Google Scholar; inadequate adherence to infection control practices; or a combination of these factors. Once MDROs are introduced into a health care setting, transmission and persistence of the resistant strain is determined by the availability of vulnerable patients, selective pressure exerted by antimicrobial use, increased potential for transmission from larger numbers of colonized or infected patients (“colonization pressure”),101Bonten M.J. Slaughter S. Ambergen A.W. Hayden M.K. van Voorhis J. Nathan C. et al.Arch Intern Med. 1998; 158: 1127-1132Crossref PubMed Scopus (273) Google Scholar, 102Merrer J. Santoli F. Appere de Vecchi C. Tran B. De Jonghe B. Outin H. Infect Control Hosp Epidemiol. 2000; 21: 718-723Crossref PubMed Google Scholar and the impact of implementation and adherence to prevention efforts. Patients vulnerable to colonization and infection include those with severe disease, especially those with compromised host defenses from underlying medical conditions, recent surgery, or indwelling medical devices (eg, urinary catheters or endotracheal tubes.103Lautenbach E. Patel J.B. Bilker W.B. Edelstein P.H. Fishman N.O. Clin Infect Dis. 2001; 32: 1162-1171Crossref PubMed Scopus (404) Google Scholar, 104Goetz A.M. Rihs J.D. Wagener M.M. Muder R.R. Am J Infect Control. 1998; 26: 558-562Abstract Full Text Full Text PDF PubMed Google Scholar Hospitalized patients, especially ICU patients, tend to have more risk factors than nonhospitalized patients and have the highest infection rates. For example, the risk that an ICU patient will acquire VRE increases significantly once the proportion of ICU patients colonized with VRE exceeds 50%101Bonten M.J. Slaughter S. Ambergen A.W. Hayden M.K. van Voorhis J. Nathan C. et al.Arch Intern Med. 1998; 158: 1127-1132Crossref PubMed Scopus (273) Google Scholar or the number of days of exposure to a VRE patient exceeds 15 days.105Puzniak L.A. Leet T. Mayfield J. Kollef M. Mundy L.M. Clin Infect Dis. 2002; 35: 18-25Crossref PubMed Scopus (71) Google Scholar A similar effect of coloniz
Referência(s)