Human SARS‐coronavirus RNA‐dependent RNA polymerase: Activity determinants and nucleoside analogue inhibitors
2004; Wiley; Volume: 57; Issue: 1 Linguagem: Inglês
10.1002/prot.20194
ISSN1097-0134
Autores Tópico(s)Biochemical and Molecular Research
ResumoProteins: Structure, Function, and BioinformaticsVolume 57, Issue 1 p. 12-14 Prediction Report Human SARS-coronavirus RNA-dependent RNA polymerase: Activity determinants and nucleoside analogue inhibitors Arezki Azzi, Arezki Azzi Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL). Québec City, CanadaSearch for more papers by this authorSheng-Xiang Lin, Corresponding Author Sheng-Xiang Lin [email protected] Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL). Québec City, CanadaMolecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Québec City, Qc, G1V 2G4 Canada===Search for more papers by this author Arezki Azzi, Arezki Azzi Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL). Québec City, CanadaSearch for more papers by this authorSheng-Xiang Lin, Corresponding Author Sheng-Xiang Lin [email protected] Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL). Québec City, CanadaMolecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Québec City, Qc, G1V 2G4 Canada===Search for more papers by this author First published: 11 June 2004 https://doi.org/10.1002/prot.20194Citations: 8Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Paterson R. SARS returns to China. Lancet Infect Dis 2004; 4: 64. 10.1016/S1473-3099(04)00910-7 PubMedWeb of Science®Google Scholar 2 Marra MA et al. The genome sequence of the SARS-associated coronavirus. Science 2003; 300: 1399–1404 10.1126/science.1085953 CASPubMedWeb of Science®Google Scholar 3 Ginalski K, Elofsson A, Fischer D, Rychlewski L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 2003; 19: 1015–1018. 10.1093/bioinformatics/btg124 CASPubMedWeb of Science®Google Scholar 4 Xu X, et al. Molecular model of SARS coronavirus polymerase: Implications for biochemical functions and drug design. Nucleic Acids Res 2003; 31: 7117–7130 10.1093/nar/gkg916 CASPubMedWeb of Science®Google Scholar 5 von Grotthuss M, Pas J, Wyrwicz L, Ginalski K, Rychlewski L. Application of 3D-Jury, GRDB, and Verify3D in fold recognition. Proteins 2003; 53: 418–423 10.1002/prot.10547 CASPubMedWeb of Science®Google Scholar 6 von Grotthuss M, Wyrwicz LS, Rychlewski L. mRNA cap-1 methyltransferase in the SARS genome. Cell 2003; 113: 701–702 10.1016/S0092-8674(03)00424-0 CASPubMedWeb of Science®Google Scholar 7 Jones G, Willett P, Glen RC Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267: 727–748 10.1006/jmbi.1996.0897 CASPubMedWeb of Science®Google Scholar 8 Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389–3402. 10.1093/nar/25.17.3389 CASPubMedWeb of Science®Google Scholar 9 Ng KK, Cherney MM, Vazquez AL, Machin A, Alonso JM, Parra F, James MN. Crystal structure of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 2002; 277: 1381–1387. 10.1074/jbc.M109261200 CASPubMedWeb of Science®Google Scholar 10 Bates P, Kelley LA, MacCallum RM, Sternberg MJE. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 2001; 5: 39–46 10.1002/prot.1168 CASPubMedWeb of Science®Google Scholar 11 Van Gunsteren WF, Berendsen HJC. Computer simulation of molecular dynamics: methodology, applications and perspectives in chemistry. Angew Chem Int Ed Engl 1990; 29: 992–1023 10.1002/anie.199009921 Web of Science®Google Scholar 12 Laskowski RA, McArthur MW, Moss DS, Thomson JD. PROCHECK: a program to check the stereochemistry of protein structure. J Appl Cryst 1993; 26: 183–291. 10.1107/S0021889892009944 Google Scholar 13 Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD. Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins 1998; 33: 367–382. 10.1002/(SICI)1097-0134(19981115)33:3 3.0.CO;2-W CASPubMedWeb of Science®Google Scholar 14 Koonin EV, Dolja VV. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 1993; 28: 375–430 10.3109/10409239309078440 CASPubMedWeb of Science®Google Scholar 15 Bressanelli S, Tomei L, Rey FA, De Francesco R. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 2002; 76: 3482–3492. 10.1128/JVI.76.7.3482-3492.2002 CASPubMedWeb of Science®Google Scholar 16 http://www.ncbi.nlm.nih.gov/genomes/SARS/nsP9.html Google Scholar 17 Bera S, et al. Synthesis and evaluation of optically pure dioxolanes as inhibitors of hepatitis C Virus RNA replication. Bioorg Med Chem Lett 2003; 13: 4455–4458. 10.1016/j.bmcl.2003.09.008 CASPubMedWeb of Science®Google Scholar 18 Carroll SS, et al. Inhibition of hepatitis C virus RNA replicon by 2′-modified nucleoside analogs. J Biol Chem 2003; 278: 11979–11984. 10.1074/jbc.M210914200 CASPubMedWeb of Science®Google Scholar 19 Lohmann V, Roos A, Korner F, Koch JO, Bartenschlager R. Biochemical and structural analysis of the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. J Viral Hepat 2000; 7: 167–174. 10.1046/j.1365-2893.2000.00218.x CASPubMedWeb of Science®Google Scholar 20 Eldridge MD, Murray CW, Auton TR, Paolinine GV, Mee JRP. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Comput Aided Mol Des 1997; 11: 425–445. 10.1023/A:1007996124545 CASPubMedWeb of Science®Google Scholar Citing Literature Volume57, Issue11 October 2004Pages 12-14 ReferencesRelatedInformation
Referência(s)