An information retrieval model based on simple Bayesian networks
2003; Wiley; Volume: 18; Issue: 2 Linguagem: Inglês
10.1002/int.10088
ISSN1098-111X
AutoresSilvia Acid, Luis M. de Campos, Juan M. Fernández‐Luna, Juan F. Huete,
Tópico(s)Information Retrieval and Search Behavior
ResumoInternational Journal of Intelligent SystemsVolume 18, Issue 2 p. 251-265 An information retrieval model based on simple Bayesian networks Silvia Acid, Silvia Acid [email protected] Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainSearch for more papers by this authorLuis M. De Campos, Corresponding Author Luis M. De Campos [email protected] Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainDepartamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainSearch for more papers by this authorJuan M. Fernández-Luna, Juan M. Fernández-Luna [email protected] Departmento Informática, E.P.S., Universidad de Jaén, 23071 Jaén, SpainSearch for more papers by this authorJuan F. Huete, Juan F. Huete [email protected] Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainSearch for more papers by this author Silvia Acid, Silvia Acid [email protected] Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainSearch for more papers by this authorLuis M. De Campos, Corresponding Author Luis M. De Campos [email protected] Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainDepartamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainSearch for more papers by this authorJuan M. Fernández-Luna, Juan M. Fernández-Luna [email protected] Departmento Informática, E.P.S., Universidad de Jaén, 23071 Jaén, SpainSearch for more papers by this authorJuan F. Huete, Juan F. Huete [email protected] Departamento de Ciencias de la Computación e Inteligencia Artificial, E.T.S.I. Informática, Universidad de Granada, 18071 Granada, SpainSearch for more papers by this author First published: 17 January 2003 https://doi.org/10.1002/int.10088Citations: 33AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract In this article a new probabilistic information retrieval (IR) model, based on Bayesian networks (BNs), is proposed. We first consider a basic model, which represents only direct relationships between the documents in the collection and the terms or keywords used to index them. Next, we study two versions of an extended model, which also represents direct relationships between documents. In either case the BNs are used to compute efficiently, by means of a new and exact propagation algorithm, the posterior probabilities of relevance of the documents in the collection given a query. The performance of the proposed retrieval models is tested through a series of experiments with several standard document collections. © 2003 Wiley Periodicals, Inc. References 1 WB Frakes, R Baeza-Yates (editors). Information retrieval. Data structures and algorithms. Upper Saddle River, NJ: Prentice Hall; 1992. 2 Salton G, McGill MJ. Introduction to modern information retrieval. New York: McGraw-Hill; 1983. 3 Maron ME, Kuhns JL. On relevance, probabilistic indexing, and information retrieval. J ACM 1960; 7: 216– 244. 4 Robertson SE, Sparck Jones K. Relevance weighting of search terms. J Am Soc Inform Sci 1976; 27: 129– 146. 5 Sparck Jones K, Walker S, Robertson SE. A probabilistic model of information retrieval: Development and comparative experiments Part 1. Inform Process Manage 2000; 36: 779– 808. 6 Fung R, Favero BD. Applying Bayesian networks to information retrieval. Commun ACM 1995; 38(2): 42– 57. 7 Pearl J. Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan and Kaufmann; 1988. 8 Reis Silva I. Bayesian networks for information retrieval systems, PhD thesis, Universidad Federal de Minas Gerais, 2000. 9 Turtle HR. Inference networks for document retrieval, PhD thesis, Computer and Information Science Dept, University of Massachusetts, 1990. 10 Robertson SE. The probability ranking principle in IR. J Document 1977; 33: 294– 304. 11 Fernández-Luna JM. Modelos de Recuperación de Información Basados en Redes de Creencia (in Spanish) PhD thesis, Universidad de Granada, 2001. 12 de Campos LM, Huete JF. On the use of independence relationships for learning simplified belief networks. Int J Intell Syst 1997; 12: 495– 522. 13 Geiger D, Paz A, Pearl J. Learning simple causal structures. Int J Intell Syst 1993; 8: 231– 247. 14 Acid S, de Campos LM, Fernández-Luna JM, Huete JF. An information retrieval model based on simple Bayesian networks. DECSAI Technical Report n. 020201, 2002. 15 de Campos LM, Fernández-Luna JM, Huete JF. Building Bayesian network-based information retrieval systems. In: 2nd Workshop on Logical and Uncertainty Models for Information Systems (LUMIS), London, 2000. pp 543– 552. 16 van Rijsbergen CJ. Information retrieval, 2nd Ed. London: Butter Worths; 1979. 17 Voorhees EM, Harman D. Overview of the 9th Text REtrieval Conference (TREC-9). In: Voorhees EM, Harman D, editors. Proc 9th Text REtrieval Conf, NIST Special Publication 500-249; 2000. pp 1– 13. Citing Literature Volume18, Issue2Special Issue: Probabilistic Graphical ModelsFebruary 2003Pages 251-265 ReferencesRelatedInformation
Referência(s)