Critical Role of Imaging in the Neurosurgical and Radiotherapeutic Management of Brain Tumors
2014; Radiological Society of North America; Volume: 34; Issue: 3 Linguagem: Inglês
10.1148/rg.343130156
ISSN1527-1323
AutoresLily Wang, James L. Leach, John C. Breneman, Christopher McPherson, Mary Gaskill-Shipley,
Tópico(s)Fetal and Pediatric Neurological Disorders
ResumoHomeRadioGraphicsVol. 34, No. 3 PreviousNext Neurologic/Head and Neck ImagingCritical Role of Imaging in the Neurosurgical and Radiotherapeutic Management of Brain TumorsLily L. Wang, James L. Leach, John C. Breneman, Christopher M. McPherson, Mary F. Gaskill-Shipley Lily L. Wang, James L. Leach, John C. Breneman, Christopher M. McPherson, Mary F. Gaskill-Shipley Author AffiliationsFrom the Departments of Radiology (L.L.W., J.L.L., M.F.G.S.), Radiation Oncology (J.C.B.), and Neurosurgery (C.M.M.), University of Cincinnati College of Medicine, 234 Goodman St, Cincinnati, OH 45267-0761; Brain Tumor Center at the UC Neuroscience Institute and UC Cancer Institute (L.L.W., J.L.L., J.C.B., C.M.M., M.F.G.S.); and Departments of Radiology (J.L.L) and Radiation Oncology (J.C.B.), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio.Address correspondence to M.F.G.S. (e-mail: [email protected]).Lily L. WangJames L. LeachJohn C. BrenemanChristopher M. McPhersonMary F. Gaskill-Shipley Published Online:May 1 2014https://doi.org/10.1148/rg.343130156MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Law M. Advanced imaging techniques in brain tumors. Cancer Imaging 2009;9(Spec No A):S4–S9. Crossref, Medline, Google Scholar2. Jenkinson MD, Du Plessis DG, Walker C, Smith TS. Advanced MRI in the management of adult gliomas. Br J Neurosurg 2007;21(6):550–561. Crossref, Medline, Google Scholar3. Yang E, Nucifora PG, Melhem ER. Diffusion MR imaging: basic principles. Neuroimaging Clin N Am 2011;21(1):1–25, vii. Crossref, Medline, Google Scholar4. Yamasaki F, Kurisu K, Satoh K, et al. Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 2005;235(3):985–991. Link, Google Scholar5. Kanekar SG, Zacharia T, Roller R. Imaging of stroke. II. Pathophysiology at the molecular and cellular levels and corresponding imaging changes. AJR Am J Roentgenol 2012;198(1):63–74. Crossref, Medline, Google Scholar6. Schwartz KM, Erickson BJ, Lucchinetti C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology 2006;48(3):143–149. Crossref, Medline, Google Scholar7. Hygino da Cruz LC Jr, Vieira IG, Domingues RC. Diffusion MR imaging: an important tool in the assessment of brain tumors. Neuroimaging Clin N Am 2011;21(1):27–49, vii. Crossref, Medline, Google Scholar8. Sutherland T, Yap K, Liew E, Tartaglia C, Pang M, Trost N. Primary central nervous system lymphoma in immunocompetent patients: a retrospective review of MRI features. J Med Imaging Radiat Oncol 2012;56(3):295–301. Crossref, Medline, Google Scholar9. Zacharia TT, Law M, Naidich TP, Leeds NE. Central nervous system lymphoma characterization by diffusion-weighted imaging and MR spectroscopy. J Neuroimaging 2008;18(4):411–417. Crossref, Medline, Google Scholar10. Hakyemez B, Erdogan C, Yildirim N, Parlak M. Glioblastoma multiforme with atypical diffusion-weighted MR findings. Br J Radiol 2005;78(935):989–992. Crossref, Medline, Google Scholar11. Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 2001;22(5):969–976. Medline, Google Scholar12. Borogovac A, Asllani I. Arterial spin labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int J Biomed Imaging 2012;2012:818456 . Medline, Google Scholar13. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 2002;223(1): 11–29. Link, Google Scholar14. Cha S. Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 2003;11(3):403–413. Crossref, Medline, Google Scholar15. Aronen HJ, Perkiö J. Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 2002;12(4):501–523. Crossref, Medline, Google Scholar16. Thompson G, Mills SJ, Stivaros SM, Jackson A. Imaging of brain tumors: perfusion/permeability. Neuroimaging Clin N Am 2010;20(3):337–353. Crossref, Medline, Google Scholar17. Cha S, Tihan T, Crawford F, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2005;26(2):266–273. Medline, Google Scholar18. Hartmann M, Heiland S, Harting I, et al. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 2003;338(2): 119–122. Crossref, Medline, Google Scholar19. Liao W, Liu Y, Wang X, et al. Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging. Acta Radiol 2009;50(2):217–225. Crossref, Medline, Google Scholar20. Filippi M, Rocca MA, De Stefano N, et al. Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch Neurol 2011;68(12): 1514–1520. Crossref, Medline, Google Scholar21. Ge Y, Law M, Johnson G, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol 2005;26(6):1539–1547. Medline, Google Scholar22. Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 2001; 22(4):604–612. Medline, Google Scholar23. Hollingworth W, Medina LS, Lenkinski RE, et al. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 2006;27(7): 1404–1411. Medline, Google Scholar24. Brandão LA, Shiroishi MS, Law M. Brain tumors: a multimodality approach with diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, dynamic susceptibility contrast and dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging Clin N Am 2013;21(2):199–239. Crossref, Medline, Google Scholar25. Bendszus M, Warmuth-Metz M, Klein R, et al. MR spectroscopy in gliomatosis cerebri. AJNR Am J Neuroradiol 2000;21(2):375–380. Medline, Google Scholar26. Brandão L, Domingues R. Intracranial neoplasms. Philadelphia, Pa: Lippincott, Williams & Wilkins, 2002; 156–164. Google Scholar27. Lai PH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 2002;23(8):1369–1377. Medline, Google Scholar28. McGirt MJ, Chaichana KL, Gathinji M, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 2009;110(1):156–162. Crossref, Medline, Google Scholar29. Smith JS, Chang EF, Lamborn KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 2008;26(8):1338–1345. Crossref, Medline, Google Scholar30. Garrett MC, Pouratian N, Liau LM. Use of language mapping to aid in resection of gliomas in eloquent brain regions. Neurosurg Clin N Am 2012;23(3):497–506. Crossref, Medline, Google Scholar31. Dimou S, Battisti RA, Hermens DF, Lagopoulos J. A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 2013;36(2):205–214; discussion 214. Crossref, Medline, Google Scholar32. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14(1):68–78. Crossref, Medline, Google Scholar33. Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003;23(10):3963–3971. Crossref, Medline, Google Scholar34. Huettel SA, Song AW, McCarthy G. Spatial and temporal properties of fMRI. In: Huettel SA, McCarthy G, eds. Functional magnetic resonance imaging. Sunderland, England: Sinauer, 2004; 185–216. Google Scholar35. Goebel R. Localization of brain activity using functional magnetic resonance imaging. In: Stippich C, ed. Clinical functional MRI: presurgical functional neuroimaging. Heidelberg, Germany: Springer-Verlag, 2007; 9–51. Crossref, Google Scholar36. Kesavadas C, Thomas B, Sujesh S, et al. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy. Pediatr Radiol 2007;37(10):964–974. Crossref, Medline, Google Scholar37. Leach JL, Holland SK. Functional MRI in children: clinical and research applications. Pediatr Radiol 2010;40(1):31–49. Crossref, Medline, Google Scholar38. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013;34(10):1866–1872. Crossref, Medline, Google Scholar39. Zhang D, Johnston JM, Fox MD, et al. Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 2009;65(6 suppl): 226–236. Medline, Google Scholar40. Medina LS, Bernal B, Ruiz J. Role of functional MR in determining language dominance in epilepsy and nonepilepsy populations: a Bayesian analysis. Radiology 2007;242(1):94–100. Link, Google Scholar41. Bizzi A, Blasi V, Falini A, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 2008;248(2):579–589. Link, Google Scholar42. Giussani C, Roux FE, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 2010;66(1):113–120. Crossref, Medline, Google Scholar43. Kundu B, Penwarden A, Wood JM, et al. Association of functional magnetic resonance imaging indices with postoperative language outcomes in patients with primary brain tumors. Neurosurg Focus 2013; 34(4):E6. Crossref, Medline, Google Scholar44. Kapsalakis IZ, Kapsalaki EZ, Gotsis ED, et al. Preoperative evaluation with FMRI of patients with intracranial gliomas. Radiol Res Pract 2012;2012: 727810. Medline, Google Scholar45. Lehéricy S, Duffau H, Cornu P, et al. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 2000;92(4):589–598. Crossref, Medline, Google Scholar46. Li SW, Wang JF, Jiang T, et al. Preoperative 3T high field blood oxygen level dependent functional magnetic resonance imaging for glioma involving sensory cortical areas. Chin Med J (Engl) 2010;123(8): 1006–1010. Medline, Google Scholar47. Roessler K, Donat M, Lanzenberger R, et al. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 2005;76(8):1152–1157. Crossref, Medline, Google Scholar48. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics 2007;4(3):316–329. Crossref, Medline, Google Scholar49. Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed 2002; 15(7-8):468–480. Crossref, Medline, Google Scholar50. Nimsky C, Ganslandt O, Fahlbusch R. Implementation of fiber tract navigation. Neurosurgery 2007;61 (1 suppl):306–317; discussion 317–318. Medline, Google Scholar51. Richter M, Zolal A, Ganslandt O, Buchfelder M, Nimsky C, Merhof D. Evaluation of diffusion-tensor imaging-based global search and tractography for tumor surgery close to the language system. PLoS One 2013;8(1):e50132. Crossref, Medline, Google Scholar52. Bozzao A, Romano A, Angelini A, et al. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation. Eur Radiol 2010;20(10):2475–2481. Crossref, Medline, Google Scholar53. Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 2007;107(3): 488–494. Crossref, Medline, Google Scholar54. Ohue S, Kohno S, Inoue A, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 2012;70(2):283–293; discussion 294. Crossref, Medline, Google Scholar55. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007;61(5):935–948; discussion 948–949. Crossref, Medline, Google Scholar56. Kamada K, Todo T, Masutani Y, et al. Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. J Neurosurg 2007;106(1):90–98. Crossref, Medline, Google Scholar57. Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 2010;112(3):503–511. Crossref, Medline, Google Scholar58. Farquharson S, Tournier JD, Calamante F, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 2013;118(6): 1367–1377. Crossref, Medline, Google Scholar59. Kuhnt D, Bauer MH, Egger J, et al. Fiber tractography based on diffusion tensor imaging compared with high-angular-resolution diffusion imaging with compressed sensing: initial experience. Neurosurgery 2013;72(suppl 1):165–175. Medline, Google Scholar60. Fernandez-Miranda JC, Pathak S, Engh J, et al. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 2012;71(2):430–453. Crossref, Medline, Google Scholar61. Price SJ. The role of advanced MR imaging in understanding brain tumour pathology. Br J Neurosurg 2007;21(6):562–575. Crossref, Medline, Google Scholar62. Smits M, Vernooij MW, Wielopolski PA, Vincent AJ, Houston GC, van der Lugt A. Incorporating functional MR imaging into diffusion tensor tractography in the preoperative assessment of the corticospinal tract in patients with brain tumors. AJNR Am J Neuroradiol 2007;28(7):1354–1361. Crossref, Medline, Google Scholar63. McPherson CM, Leach JL, Vagal AV, et al. Operative integration of functional MRI and diffusion tensor tractography performed at 3T: correlation of resection extent and localization with post-operative clinical outcome in patients with brain neoplasia. Presented at the annual meeting of the Congress of Neurologic Surgeons, Orlando, Fla, September 20–25, 2008. Google Scholar64. Bohinski RJ, Warnick RE, Gaskill-Shipley MF, et al. Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery 2001;49(5):1133–1143; discussion 1143–1144. Medline, Google Scholar65. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 2011;12(11):997–1003. Crossref, Medline, Google Scholar66. Bohinski RJ, Kokkino AK, Warnick RE, et al. Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 2001; 48(4):731–742; discussion 742–744. Crossref, Medline, Google Scholar67. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987;66(6):865–874. Crossref, Medline, Google Scholar68. Guarnaschelli J, Vagal A, McKenzie J, et al. Target definition for malignant gliomas: no difference in radiation treatment volumes between 1.5T and 3T magnetic resonance imaging. Presented at the annual meeting of ASTRO, Miami, Fla, October 2–6, 2011. Google Scholar69. Krishnan AP, Asher IM, Davis D, Okunieff P, O’Dell WG. Evidence that MR diffusion tensor imaging (tractography) predicts the natural history of regional progression in patients irradiated conformally for primary brain tumors. Int J Radiat Oncol Biol Phys 2008;71(5):1553–1562. Crossref, Medline, Google Scholar70. Mammar H, Kerrou K, Nataf V, et al. Positron emission tomography/computed tomography imaging of residual skull base chordoma before radiotherapy using fluoromisonidazole and fluorodeoxyglucose: potential consequences for dose painting. Int J Radiat Oncol Biol Phys 2012;84(3):681–687. Crossref, Medline, Google Scholar71. Oser AB, Moran CJ, Kaufman BA, Park TS. Intracranial tumor in children: MR imaging findings within 24 hours of craniotomy. Radiology 1997;205(3):807–812. Link, Google Scholar72. Winterstein M, Münter MW, Burkholder I, Essig M, Kauczor HU, Weber MA. Partially resected gliomas: diagnostic performance of fluid-attenuated inversion recovery MR imaging for detection of progression. Radiology 2010;254(3):907–916. Link, Google Scholar73. Hamstra DA, Chenevert TL, Moffat BA, et al. Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci U S A 2005;102(46):16759–16764. Crossref, Medline, Google Scholar74. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004;25(2):201–209. Medline, Google Scholar75. Asao C, Korogi Y, Kitajima M, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005;26(6):1455–1460. Medline, Google Scholar76. Clarke JL, Chang S. Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci Rep 2009;9(3):241–246. Crossref, Medline, Google Scholar77. Jain R, Narang J, Sundgren PM, et al. Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 2010;100(1): 17–29. Crossref, Medline, Google Scholar78. Fink J, Born D, Chamberlain MC. Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr Neurol Neurosci Rep 2012;12(3):276–285. Crossref, Medline, Google Scholar79. Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH. Radiation necrosis following treatment of high grade gliomas: a review of the literature and current understanding. Acta Neurochir (Wien) 2012; 154(2):191–201; discussion 201. Crossref, Medline, Google Scholar80. Fatterpekar GM, Galheigo D, Narayana A, Johnson G, Knopp E. Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol 2012;198(1):19–26. Crossref, Medline, Google Scholar81. Barajas RF Jr, Chang JS, Segal MR, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253(2):486–496. Link, Google Scholar82. Rock JP, Hearshen D, Scarpace L, et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002;51(4): 912–919; discussion 919–920. Medline, Google Scholar83. Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 2007;82(1):81–83. Crossref, Medline, Google Scholar84. Brandes AA, Tosoni A, Spagnolli F, et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 2008;10(3):361–367. Crossref, Medline, Google Scholar85. Taal W, Brandsma D, de Bruin HG, et al. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 2008;113(2):405–410. Crossref, Medline, Google Scholar86. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008;9(5):453–461. Crossref, Medline, Google Scholar87. Mangla R, Singh G, Ziegelitz D, et al. Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 2010;256(2):575–584. Link, Google Scholar88. Santra A, Kumar R, Sharma P, et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol 2012;81(3):508–513. Crossref, Medline, Google ScholarArticle HistoryReceived: June 11 2013Revision requested: Sept 4 2013Revision received: Dec 30 2013Accepted: Jan 22 2014Published online: May 2014Published in print: May 2014 FiguresReferencesRelatedDetailsCited ByTouchless Interfaces in the Operating Room: A Study in Gesture PreferencesNaveenMadapana, DanielaChanci, GlebysGonzalez, LingsongZhang, Juan P.Wachs2023 | International Journal of Human–Computer Interaction, Vol. 39, No. 3PET/MR: Functional and Molecular Imaging of Neurological Diseases and NeurosciencesShuangshuangSong, KunGuo, ZhilianZhao, ZhigangQi, JieLu2023Revolutionizing pediatric neuroimaging: the era of CT, MRI, and beyondMaura E.Ryan, AlokJaju2023 | Child's Nervous SystemHandbook of Neuro-Oncology NeuroimagingZachary S.Mayo, AhmedHalima, Samuel T.Chao, Simon S.Lo, Joseph A.Bovi, John H.Suh2022Photorealistic Depiction of Intracranial Tumors Using Cinematic Rendering of Volumetric 3T MRI DataDhairya A.Lakhani, GerardDeib2022 | Academic Radiology, Vol. 29, No. 10Classification of Benign and Malignant Features of Glioma and Prediction of Early Metastasis and Recurrence Based on Enhanced MRI ImagingDaiwenChen, ZiqianChen, ShanwenXu, HuiLi, MPallikonda Rajasekaran2022 | Scientific Programming, Vol. 2022MR Imaging of Pediatric Brain TumorsAlokJaju, Kristen W.Yeom, Maura E.Ryan2022 | Diagnostics, Vol. 12, No. 4Central Nervous System TumorsRobertoGarcia-Navarrete, ConstantinoContreras-Vázquez, ErickaLeón-Alvárez, NataelOlvera González, AlfonsoMarhx-Bracho, JavierTerrazo-Lluch, JoséLuis Pérez-Gómez, JorgeAlberto Ocon Rodríguez, JudyCastañeda Goyes, JuanAlberto Díaz Ponce Medrano2022Response assessment in paediatric intracranial ependymoma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groupHolly BLindsay, MauraMassimino, ShivaramAvula, StavrosStivaros, RichardGrundy, KatieMetrock, AashimBhatia, AnaFernández-Teijeiro, LuisaChiapparini, JeffreyBennett, KarenWright, Lindsey MHoffman, AmySmith, Kristian WPajtler, Tina YoungPoussaint, Katherine EWarren, Nicholas KForeman, David MMirsky2022 | The Lancet Oncology, Vol. 23, No. 8NeuromethodsMarco C.Pinho, KaustavBera, NihaBeig, PallaviTiwari2021 | , Vol. 158Patient-specific virtual reality technology for complex neurosurgical cases: illustrative casesDianaAnthony, Robert G.Louis, YevgeniaShekhtman, ThomasSteineke, AnthonyFrempong-Boadu, Gary K.Steinberg2021 | Journal of Neurosurgery: Case Lessons, Vol. 1, No. 23Errors in ImagingHarisChrysikopoulos2020Atlas of Clinical Cases on Brain Tumor ImagingÖmerKitiş, SevcanTürk2020PET and SPECT Imaging of Brain TumorsJessicaZhang, Katie SuzanneTraylor, James M.Mountz2020 | Seminars in Ultrasound, CT and MRI, Vol. 41, No. 6Brain Tumor-Enhancement Visualization and Morphometric Assessment: A Comparison of MPRAGE, SPACE, and VIBE MRI TechniquesL.Danieli, G.C.Riccitelli, D.Distefano, E.Prodi, E.Ventura, A.Cianfoni, A.Kaelin-Lang, M.Reinert, E.Pravatà2019 | American Journal of Neuroradiology, Vol. 40, No. 7Elucidating the kinetics of sodium fluorescein for fluorescence-guided surgery of gliomaMargaretFolaron, RendallStrawbridge, Kimberley S.Samkoe, CarolineFilan, David W.Roberts, Scott C.Davis2019 | Journal of Neurosurgery, Vol. 131, No. 3Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practiceS. C.Thust, S.Heiland, A.Falini, H. R.Jäger, A. D.Waldman, P. C.Sundgren, C.Godi, V. K.Katsaros, A.Ramos, N.Bargallo, M. W.Vernooij, T.Yousry, M.Bendszus, M.Smits2018 | European Radiology, Vol. 28, No. 8Response Assessment in Treated Brain Tumors: The FundamentalsMohamadBazerbashi, DianaGomez-Hassan2018 | Seminars in Roentgenology, Vol. 53, No. 1Test–retest reliability of perfusion of the precentral cortex and precentral subcortical white matter on three-dimensional pseudo-continuous arterial spin labelingMengqiLiu, ZhiyeChen, LinMa2018 | Journal of International Medical Research, Vol. 46, No. 9GlioblastomaJames EricSchmitt, Joel M.Stein2016Diagnostic performance of texture analysis on MRI in grading cerebral gliomasKarolineSkogen, AnselmSchulz, Johann BaptistDormagen, BalajiGaneshan, EirikHelseth, AndrèsServer2016 | European Journal of Radiology, Vol. 85, No. 4Virtual implantation of a novel LVAD: toward computer-assisted surgery for heart failureAmedeoAnselmi, SophieCollin, PascalHaigron, Jean-PhilippeVerhoye, ErwanFlecher2016 | Journal of Surgical Research, Vol. 205, No. 1Virtual implantation and patient-specific simulation for optimization of outcomes in ventricular assist device recipientsAmedeoAnselmi, SophieCollin, PascalHaigron, Jean-PhilippeVerhoye, ErwanFlecher2016 | Medical Hypotheses, Vol. 91Functional MR Imaging Techniques in Oncology in the Era of Personalized MedicineMatthias R.Benz, Hebert AlbertoVargas, EvisSala2016 | Magnetic Resonance Imaging Clinics of North America, Vol. 24, No. 1Pretreatment Evaluation of GliomaAliMohammadzadeh, VahidMohammadzadeh, SoheilKooraki, HoumanSotoudeh, SakinehKadivar, MadjidShakiba, BahmanRasuli, AliBorhani, MaryamMohammadzadeh2016 | Neuroimaging Clinics of North America, Vol. 26, No. 4Value of serial magnetic resonance imaging in the assessment of brain metastases volume control during stereotactic radiosurgeryGianvincenzoSparacia, FrancescoAgnello, AureliaBanco, FrancescoBencivinni, AndreaAnastasi, GiovannaGiordano, AdeleTaibbi, MassimoGalia, Tommaso VincenzoBartolotta2016 | World Journal of Radiology, Vol. 8, No. 12Recommended Articles Identification of Early Response to Anti-Angiogenic Therapy in Recurrent Glioblastoma: Amide Proton Transfer–weighted and Perfusion-weighted MRI compared with Diffusion-weighted MRIRadiology2020Volume: 295Issue: 2pp. 397-406Fundamentals of Radiation Oncology for Neurologic ImagingRadioGraphics2020Volume: 40Issue: 3pp. 827-858Emerging Applications of Artificial Intelligence in Neuro-OncologyRadiology2019Volume: 290Issue: 3pp. 607-618Recognizing Radiation-induced Changes in the Central Nervous System: Where to Look and What to Look ForRadioGraphics2020Volume: 41Issue: 1pp. 224-248Multiparametric MR Imaging of Diffusion and Perfusion in Contrast-enhancing and Nonenhancing Components in Patients with GlioblastomaRadiology2017Volume: 284Issue: 1pp. 180-190See More RSNA Education Exhibits Is It Treatment Related Change Or Disease Progression? - Looking Beyond Size With Diffusion And Perfusion ImagingDigital Posters2021Stroke-like Migraine Attacks After Radiation Therapy (smart) Syndrome: What We Know And What Remains UnknownDigital Posters2021The Good , The Bad And The Ugly - Multifaceted Imaging Of Radiation Necrosis In High Grade GliomasDigital Posters2021 RSNA Case Collection Mesial temporal sclerosisRSNA Case Collection2020Juvenile pilocytic astrocytomaRSNA Case Collection2020Solitary intracranial metastasis RSNA Case Collection2020 Vol. 34, No. 3 AbbreviationsAbbreviationsADCapparent diffusion coefficientAFarcuate fasciculusBOLDblood oxygen level–dependentCBVcerebral blood volumeCNScentral nervous systemCSTcorticospinal tractCTVclinical target volumeDSCdynamic susceptibility contrastDTIdiffusion tensor imagingDWdiffusion-weightedESMelectrocortical stimulation mappingFLAIRfluid-attenuated inversion recoveryGBMglioblastoma multiformeGTVgross tumor volumeNAAN-acetylaspartateTEecho time Metrics Altmetric Score PDF download
Referência(s)