Hydrogenography: An Optical Combinatorial Method To Find New Light‐Weight Hydrogen‐Storage Materials
2007; Volume: 19; Issue: 19 Linguagem: Inglês
10.1002/adma.200602560
ISSN1521-4095
AutoresR. Gremaud, Chase P. Broedersz, D. M. Borsa, Andreas Borgschulte, Ph. Mauron, Herman Schreuders, J. H. Rector, B. Dam, R. Griessen,
Tópico(s)Spacecraft and Cryogenic Technologies
ResumoAdvanced MaterialsVolume 19, Issue 19 p. 2813-2817 Communication Hydrogenography: An Optical Combinatorial Method To Find New Light-Weight Hydrogen-Storage Materials† R. Gremaud, R. Gremaud [email protected] Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorC. P. Broedersz, C. P. Broedersz Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorD. M. Borsa, D. M. Borsa Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorA. Borgschulte, A. Borgschulte EMPA, Materials Science & Technology, Department of Mobility, Environment & Energy, Division 138, Hydrogen & Energy, Überlandstrasse 129, 8600 Dübendorf (Switzerland)Search for more papers by this authorP. Mauron, P. Mauron EMPA, Materials Science & Technology, Department of Mobility, Environment & Energy, Division 138, Hydrogen & Energy, Überlandstrasse 129, 8600 Dübendorf (Switzerland)Search for more papers by this authorH. Schreuders, H. Schreuders Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorJ. H. Rector, J. H. Rector Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorB. Dam, B. Dam Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorR. Griessen, R. Griessen Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this author R. Gremaud, R. Gremaud [email protected] Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorC. P. Broedersz, C. P. Broedersz Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorD. M. Borsa, D. M. Borsa Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorA. Borgschulte, A. Borgschulte EMPA, Materials Science & Technology, Department of Mobility, Environment & Energy, Division 138, Hydrogen & Energy, Überlandstrasse 129, 8600 Dübendorf (Switzerland)Search for more papers by this authorP. Mauron, P. Mauron EMPA, Materials Science & Technology, Department of Mobility, Environment & Energy, Division 138, Hydrogen & Energy, Überlandstrasse 129, 8600 Dübendorf (Switzerland)Search for more papers by this authorH. Schreuders, H. Schreuders Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorJ. H. Rector, J. H. Rector Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorB. Dam, B. Dam Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this authorR. Griessen, R. Griessen Department of Physics and Astronomy, Condensed Matter Physics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (The Netherlands)Search for more papers by this author First published: 29 August 2007 https://doi.org/10.1002/adma.200602560Citations: 167 † This work is financially supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the Sustainable Hydrogen Programme of Advanced Chemical Technologies for Sustainability (ACTS). We thank S. May for careful reading of the manuscript. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Hydrogenography optically monitors hydrogen ab- and desorption simultaneously on thousands of alloy compositions under exactly the same experimental conditions. In this way the hydride-formation enthalpy map of the Mg–Ni–Ti–H system is determined from a compositional gradient thin film. The figure shows that the region of interesting hydrogen-storage materials is in dark blue, with enthalpies of around –40 kJ (mol H2)–1. REFERENCES 1 J. J. Vajo, F. Mertens, C. C. Ahn, R. C. Bowman, B. Fultz, J. Phys. Chem. B 2004, 108, 13977. 10.1021/jp040060h CASWeb of Science®Google Scholar 2 B. Bogdanovic, M. Schwickardi, J. Alloys Compd. 1997, 253–254, 1. 10.1016/S0925-8388(96)03049-6 CASWeb of Science®Google Scholar 3 J. Chen, N. Kuriyama, Q. Xu, H. T. Takeshita, T. Sakai, J. Phys. Chem. B 2001, 105, 11214. 10.1021/jp012127w CASWeb of Science®Google Scholar 4 R. Griessen, T. Riesterer, Topics in Applied Physics: Hydrogen in Intermetallic Compounds I, Springer-Verlag: Berlin 1988. Google Scholar 5 The acquisition of a thin-film optical p–c isotherm takes between a few hours to one day, in contrast to days–weeks for bulk techniques. Google Scholar 6 J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. De Groot, N. J. Koeman, Nature 1996, 380, 231. 10.1038/380231a0 CASWeb of Science®Google Scholar 7 T. F. Rosenbaum, A. F. T. Hoekstra, Adv. Mater. 2002, 14, 247. 10.1002/1521-4095(20020205)14:3 3.0.CO;2-# CASWeb of Science®Google Scholar 8 R. Gremaud, A. Borgschulte, C. Chacon, J. L. M. van Mechelen, H. Schreuders, A. Züttel, B. Hjörvarsson, B. Dam, R. Griessen, Appl. Phys. A 2006, 84, 77. 10.1007/s00339-006-3579-z CASWeb of Science®Google Scholar 9 M. Pasturel, M. Slaman, H. Schreuders, J. H. Rector, D. M. Borsa, B. Dam, R. Griessen, J. Appl. Phys. 2006, 100, 02351. 10.1063/1.2214208 CASWeb of Science®Google Scholar 10 A. Borgschulte, R. Gremaud, S. de Man, R. J. Westerwaal, J. H. Rector, B. Dam, R. Griessen, Appl. Surf. Sci. 2006, 253, 1417. 10.1016/j.apsusc.2006.02.017 CASWeb of Science®Google Scholar 11 If one assumes that ΔS0 is determined by the loss of entropy between H2 gas and the H in a metal, peq = 1. 013 × 105 Pa corresponds to ΔH = –39. 2 kJ (mol H2)–1. Google Scholar 12 J. J. Reilly, R. H. Wiswall, Inorg. Chem. 1968, 7, 2254. 10.1021/ic50069a016 CASWeb of Science®Google Scholar 13 P. Zolliker, K. Yvon, P. Fischer, J. Schefer, Inorg. Chem. 1985, 24, 4177. 10.1021/ic00218a039 CASWeb of Science®Google Scholar 14 J.-J. Didisheim, P. Zolliker, K. Yvon, P. Fischer, J. Schefer, M. Gubelmann, A. F. Williams, Inorg. Chem. 1984, 23, 1953. 10.1021/ic00181a032 CASWeb of Science®Google Scholar 15 J. J. Reilly, R. H. Wiswall, Inorg. Chem. 1967, 6, 2220. 10.1021/ic50058a020 CASWeb of Science®Google Scholar 16 G. Liang, R. Schulz, J. Mater. Sci. 2003, 38, 1179. 10.1023/A:1022889100360 CASWeb of Science®Google Scholar 17 D. Kyoi, T. Sato, E. Rönnebro, N. Kitamura, A. Uedac, M. Ito, S. Katsuyama, S. Hara, D. Noreus, T. Sakai, J. Alloys. Compd. 2004, 372, 213. 10.1016/j.jallcom.2003.08.098 CASWeb of Science®Google Scholar 18 R. A. H. Niessen, P. H. L. Notten, Electrochem. Solid-State Lett. 2005, 10, A534. 10.1149/1.2012238 CASWeb of Science®Google Scholar 19 D. M. Borsa, A. Baldi, M. Pasturel, H. Schreuders, B. Dam, R. Griessen, P. Vermeulen, P. H. L. Notten, Appl. Phys. Lett. 2006, 88, 241910. 10.1063/1.2212287 CASWeb of Science®Google Scholar 20 P. Vermeulen, R. A. H. Niessen, P. H. L. Notten, El. Comm. 2006, 8, 27. 10.1016/j.elecom.2005.10.013 CASWeb of Science®Google Scholar 21 D. M. Borsa, R. Gremaud, A. Baldi, H. Schreuders, J. H. Rector, B. Kooi, P. Vermeulen, P. H. L. Notten, B. Dam, R. Griessen, Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 205408. 10.1103/PhysRevB.75.205408 Web of Science®Google Scholar 22 A. Borgschulte, W. Lohstroh, R. J. Westerwaal, H. Schreuders, J. H. Rector, B. Dam, R. Griessen, J. Alloys. Compd. 2005, 404-406, 699. 10.1016/j.jallcom.2005.01.137 CASWeb of Science®Google Scholar 23 A. Krozer, B. Kasemo, J. Less-Common Met. 1990, 160, 323. 10.1016/0022-5088(90)90391-V CASWeb of Science®Google Scholar 24 P. Vajeeston, P. Ravindran, B. C. Hauback, H. Fjellvåg, A. Kjekhus, S. Furuseth, M. Hanfland, Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 224102. 10.1103/PhysRevB.73.224102 Web of Science®Google Scholar 25 W. Lohstroh, R. J. Westerwaal, J. L. M. van Mechelen, C. Chacon, E. Johansson, B. Dam, R. Griessen, Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70, 165411. 10.1103/PhysRevB.70.165411 Web of Science®Google Scholar 26 W. Lohstroh, R. J. Westerwaal, J. L. M. Van Mechelen, H. Schreuders, B. Dam, R. Griessen, J. Alloys. Compd. 2007, 430, 13. 10.1016/j.jallcom.2006.04.075 CASWeb of Science®Google Scholar 27 G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, J. Alloys. Compd. 1998, 267, 302. 10.1016/S0925-8388(97)00533-1 CASWeb of Science®Google Scholar 28 M. Y. Song, H. R. Park, J. Alloys. Compd. 1998, 270, 164. 10.1016/S0925-8388(98)00459-9 CASWeb of Science®Google Scholar 29 K. Zeng, T. Klassen, W. Oelerich, R. Bormann, J. Alloys. Compd. 1999, 283, 213. 10.1016/S0925-8388(98)00902-5 CASWeb of Science®Google Scholar 30 S. Orimo, K. Ikeda, H. Fujii, Y. Fujikawa, Y. Kitano, K. Yamamoto, Acta Mater. 1997, 45, 2271. 10.1016/S1359-6454(96)00357-6 CASWeb of Science®Google Scholar 31 C. P. Broedersz, R. Gremaud, D. Dam, R. Griessen, O. M. Løvvik, unpublished. Google Scholar 32 L. Schlapbach, A. Züttel, Nature 2001, 414, 353. 10.1038/35104634 CASPubMedWeb of Science®Google Scholar 33 R. Gremaud, M. Slaman, H. Schreuders, B. Dam, R. Griessen, unpublished. Google Scholar 34 M. Slaman, B. Dam, M. Pasturel, D. M. Borsa, H. Schreuders, J. H. Rector, R. Griessen, Sensor Actuat. B-Chem 2006, 123, 538. 10.1016/j.snb.2006.09.058 CASWeb of Science®Google Scholar Citing Literature Volume19, Issue19October, 2007Pages 2813-2817 ReferencesRelatedInformation
Referência(s)