Artigo Acesso aberto Revisado por pares

Activation of the FGF2-FGFR1 Autocrine Pathway: A Novel Mechanism of Acquired Resistance to Gefitinib in NSCLC

2013; American Association for Cancer Research; Volume: 11; Issue: 7 Linguagem: Inglês

10.1158/1541-7786.mcr-12-0652

ISSN

1557-3125

Autores

Hideki Terai, Kenzo Soejima, Hiroyuki Yasuda, Sohei Nakayama, Junko Hamamoto, Daisuke Arai, Kota Ishioka, Keiko Ohgino, Shinnosuke Ikemura, Takashi Sato, Satoshi Yoda, Ryosuke Satomi, Katsuhiko Naoki, Tomoko Betsuyaku,

Tópico(s)

Neuroendocrine Tumor Research Advances

Resumo

Patients with non-small cell lung cancer (NSCLC) that harbors epidermal growth factor receptor (EGFR) mutations initially respond to EGFR-tyrosine kinase inhibitors (TKI) but eventually experience relapse. Acquired resistance to EGFR-TKIs is strongly associated with patient mortality. Thus, elucidation of the mechanism of acquired resistance to EGFR-TKIs is of great importance. In this study, gefitinib-resistant cell line models were established by long-term exposure to gefitinib using the gefitinib-sensitive lung cancer cell lines, PC9 and HCC827. Expression analyses indicated that both FGFR1 and FGF2 were increased in PC9 gefitinib-resistant (PC9 GR) cells as compared with PC9 naïve (PC9 na) cells. Importantly, proliferation of gefitinib-resistant cells was dependent on the FGF2 -FGFR1 pathway. Mechanistically, inhibition of either FGF2 or FGFR1 by siRNA or FGFR inhibitor (PD173074) restored gefitinib sensitivity in PC9 GR cells. These data suggest that FGF2 -FGFR1 activation through an autocrine loop is a novel mechanism of acquired resistance to EGFR-TKIs.

Referência(s)