Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: Insights from a semi-arid Mediterranean environment
2011; Wiley; Volume: 22; Issue: 1 Linguagem: Inglês
10.1111/j.1654-1103.2010.01236.x
ISSN1654-1103
AutoresAndrea P. Castillo‐Monroy, Matthew A. Bowker, Fernando T. Maestre, Susana Rodríguez‐Echeverría, Isabel Martínez, Claudia Barraza‐Zepeda, Cristina Escolar,
Tópico(s)Mycorrhizal Fungi and Plant Interactions
ResumoJournal of Vegetation ScienceVolume 22, Issue 1 p. 165-174 Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: Insights from a semi-arid Mediterranean environment Andrea P. Castillo-Monroy, Andrea P. Castillo-Monroy Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorMatthew A. Bowker, Matthew A. Bowker Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorFernando T. Maestre, Fernando T. Maestre Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorSusana Rodríguez-Echeverría, Susana Rodríguez-Echeverría Centre for Functional Ecology, Department of Life Science. FCTUC, University of Coimbra, 3001-455 Coimbra, PortugalSearch for more papers by this authorIsabel Martinez, Isabel Martinez Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorClaudia E. Barraza-Zepeda, Claudia E. Barraza-Zepeda Laboratorio de Microbiología, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, ChileSearch for more papers by this authorCristina Escolar, Cristina Escolar Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this author Andrea P. Castillo-Monroy, Andrea P. Castillo-Monroy Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorMatthew A. Bowker, Matthew A. Bowker Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorFernando T. Maestre, Fernando T. Maestre Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorSusana Rodríguez-Echeverría, Susana Rodríguez-Echeverría Centre for Functional Ecology, Department of Life Science. FCTUC, University of Coimbra, 3001-455 Coimbra, PortugalSearch for more papers by this authorIsabel Martinez, Isabel Martinez Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this authorClaudia E. Barraza-Zepeda, Claudia E. Barraza-Zepeda Laboratorio de Microbiología, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, ChileSearch for more papers by this authorCristina Escolar, Cristina Escolar Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainSearch for more papers by this author First published: 12 January 2011 https://doi.org/10.1111/j.1654-1103.2010.01236.xCitations: 88 Castillo-Monroy, A.P. (corresponding author: [email protected]), Bowker, M.A. ([email protected]), Maestre, F.T. ([email protected]), Martinez, I. ([email protected]) & Escolar, C. ([email protected]): Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, SpainRodríguez-Echeverría, S. ([email protected]): Centre for Functional Ecology, Department of Life Science. FCTUC, University of Coimbra, 3001-455 Coimbra, PortugalBarraza-Zepeda, C.E. ([email protected]): Laboratorio de Microbiología, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, ChileCurrent Address: Colorado Plateau Research Station, P.O. Box 5614, ARD Building, Northern Arizona University, Flagstaff, AZ 86011, USA Co-ordinating Editor: Alicia Acosta Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi-arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC-forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above- and below-ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC-forming lichens as drivers of small-scale changes in ecosystem functioning. This study provides valuable insights on semi-arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs. References Adair, K.L. & Schwartz, E. 2008. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soil of northern Arizona, USA. Microbial Ecology 56: 420– 426. Akpinar, A.U., Ozturk, S. & Sinirtas, M. 2009. Effects of some terricolous lichens (Cladonia rangiformis Hoffm., Pertigera neckerii Hepp ex Müll. Arg., Peltigera rufescens (Weiss) Humb.) on soil bacteria in natural conditions. Plant Soil and Environment 55: 154– 158. Bardgett, R.D., Bowman, W.D., Kaufmann, R. & Schmidt, S.K. 2005. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution 20: 634– 641. Belnap, J. & Gillete, D.A. 1998. Vulnerability of desert biological soil crust to wind erosion: the influence of crust development, soil texture, and disturbance. Journal of Arid Environments 39: 133– 142. Belnap, J. & Lange, O.L. 2003. Biological soil crusts: structure, function and management. Springer, Berlin, DE. Belnap, J., Hawkes, C.V. & Firestone, M.K. 2003. Boundaries in miniature: two examples from soil. BioScience 53: 737– 794. Belnap, J., Welter, J.R., Grimm, N.B., Barger, N. & Ludwig, J.A. 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86: 298– 307. Bonkowski, M. & Roy, J. 2005. Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia 143: 232– 240. Bowker, M.A., Belnap, J., Davidson, D.W. & Goldstein, H. 2006. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. Journal of Applied Ecology 43: 152– 163. Bowker, M.A., Johnson, N.C., Belnap, J. & Koch, G. 2008. Short-term monitoring of aridland lichen cover and biomass using photography and fatty acids. Journal of Arid Environments 72: 869– 878. Bowker, M.A., Maestre, F.T. & Escolar, C. 2010a. Biological crusts as a model system for examining the biodiversity–ecosystem function relationship in soils. Soil Biology & Biochemistry 42: 405– 417. Bowker, M.A., Soliveres, S. & Maestre, F.T. 2010b. Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology 98: 551– 560. Bridge, P. & Spooner, B. 2001. Soil fungi: diversity and detection. Plant and Soil 232: 147– 154. Castillo-Monroy, A.P., Maestre, F.T., Delgado-Baquerizo, M. & Gallardo, A. 2010. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant and Soil 333: 21– 34. De Deyn, G.B., Raaijmakers, C.E. & van Ruijven, J. 2004. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 160: 576– 586. Delgado-Baquerizo, M., Castillo-Monroy, A.P., Maestre, F.T. & Gallardo, A. 2010. Plants and biological soil crusts modulate the dominance of N forms in a semi-arid grassland. Soil Biology & Biochemistry 42: 376– 378. Dick, R.P. 1994. Soil enzyme activities as indicators of soil quality. In: J.V. Doran, D.C. Colleman, D.F. Bezdicek & B.A. Stewart (eds.) Defining soil quality for a sustainable environment. pp. 107– 124. Soil Science Society of America, Madison, WI, US. Fahselt, D. 1994. Secondary biochemistry of lichens. Symbiosis 16: 117– 165. Fierer, N., Jackson, J.A., Vilgalys, R. & Jackson, R.B. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology 71: 4117– 4120. Forney, L.J., Zhou, X. & Brown, C.J. 2004. Molecular microbial ecology: land of the one-eyed king. Current Opinion in Microbiology 7: 210– 220. García-Pichel, F., López-Cortéz, A. & Nübel, U. 2001. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Applied and Environmental Microbiology 67: 1902– 1910. Gauslaa, Y. 2004. Lichen palatability depends on investments in herbivore defense. Oecologia 143: 94– 105. Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G. & van Elsas, J.D. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal of Microbiological Methods 38: 1– 15. Giller, P.S., Hillebrand, H., Berninger, U.G., Gessner, M.O., Hawkins, S., Inchausti, P., Inglis, C., Leslie, H., Malmqvist, B., Monaghan, M.T., Morin, P.J. & O'Mullan, G. 2004. Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104: 423– 436. Goslee, S.C. & Urban, D.L. 2007. The Ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22: 1– 19. Gundlapally, S.R. & Garcia-Pichel, F. 2006. The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microbial Ecology 52: 345– 357. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J. & Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3– 35. Johnson, S.L., Charles, R., Budinoff, C.R., Belnap, J. & Garcia-Pichel, F. 2005. Relevance of ammonium oxidation within biological soil crust communities. Environmental Microbiology 7: 1– 12. Kinzig, A., Pacala, S. & Tilman, D. 2002. The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, NJ, US. Lange, O.L., Belnap, J. & Reichenberger, H. 1998. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology 12: 195– 202. Lawrey, J.D. 1989. Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. Bryologist 92: 326– 328. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.L., Schuster, S.C. & Schleper, C. 2006. Archaea predominant among ammonia-oxidizing prokaryotes in soil. Nature 422: 802– 809. Loreau, M., Naeem, S. & Inchausti, P. 2002. Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, UK. Lorenzo, P., Rodriguez-Echeverria, S., González, L. & Freitas, H. 2010. Effect of invasive Acaciadealbata Link on soil microorganisms as determined by PCR-DGGE. Applied Soil Ecology 44: 245– 251. Maestre, F.T. & Cortina, J. 2003. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology 23: 199– 209. Maestre, F.T., Escudero, A., Martinez, I., Guerrero, C. & Rubio, A. 2005. Does spatial pattern matter to ecosystem functioning? Insights from biological soil crust. Functional Ecology 19: 566– 573. Maestre, F.T., Escolar, C., Martinez, I. & Escudero, A. 2008. Are soil lichen communities structured by biotic interactions? A null model analysis. Journal of Vegetation Science 19: 261– 266. Maestre, F.T., Martínez, I., Escolar, C. & Escudero, A. 2009. On the relationship between abiotic stress and co-occurrence patterns: an assessment at the community level using soil lichen communities and multiple stress gradients. Oikos 118: 1015– 1022. Maestre, F.T., Bowker, M.A., Escolar, C., Puche, M.D., Soliveres, S., Mouro, S., García-Palacios, P., Castillo-Monroy, A.P., Martínez, I. & Escudero, A. 2010. Do biotic interactions modulate ecosystem functioning along abiotic stress gradients? Insights from semi-arid Mediterranean plant and biological soil crust communities. Philosophical Transactions of the Royal Society of London B 365: 2057– 2070. Makoi, J.H.J.R. & Ndakidemi, P.A. 2008. Selected soil enzymes: examples of their potential roles in the ecosystem. African Journal of Biotechnology 7: 181– 191. Martínez, I., Escudero, A., Maestre, F.T., De la Cruz, A., Guerrero, C. & Rubio, A. 2006. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Australian Journal of Botany 54: 339– 348. McCune, B. & Grace, J.B. 2002. Analysis of ecological communities. MjM software design, Gleneden Beach, OR, US. Montès, N., Maestre, F.T., Ballini, C., Baldy, V., Gauquelin, T., Planquette, M., Greff, S., Dupouyet, S. & Perret, J.B. 2008. On the relative importance of the effects of selection and complementarity as drivers of diversity–productivity relationships in Mediterranean shrublands. Oikos 117: 1345– 1350. Muyzer, G. & Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127– 141. Naeem, S., Loreau, M. & Inchausti, P. 2002. Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework. In: M. Loreau, S. Naeem & P. Inchussti (eds.) Biodiversity and ecosystem functioning. Oxford University Press, New York, NY, US. Nannipieri, P., Ceccanti, B., Cervelli, S. & Matarese, E. 1980. Extraction of phosphatase, urease, protease, organic carbon, and nitrogen from soil. Soil Science Society of America Journal 44: 1011– 1016. Nimis, P.L. & Martellos, S. 2004. Keys to the lichens of Italy. I. Terricolous species. Edizioni Goliardiche, Trieste, IT. Øvreås, L., Forney, L., Daae, F.L. & Torsvik, V. 1997. Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology 63: 3367– 3373. Pimm, S.L. 1984. The complexity and stability of ecosystems. Nature 307: 321– 326. Porazinska, D.L., Bardgett, R.D., Postma-Blaauw, M.B., Hunt, H.W., Parsons, A.N., Seastedt, T.R. & Wall, D.M. 2003. Relationships at the aboveground–belowground interface: plants, soil biota and soil processes. Ecological Monographs 73: 377– 395. Rankovic, B., Misic, M. & Sukdolak, S. 2009. Antimicrobial activity of extracts of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla. Biologia 64: 53– 58. Reed, H.E. & Martiny, J.B. 2007. Testing the functional significance of microbial composition in natural communities. FEMS Microbiology Ecology 62: 161– 170. Reynolds, R., Belnap, J., Reheis, M., Lamothe, P. & Luiszer, F. 2001. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proceedings of the National Academy of Sciences USA 98: 7123– 7127. Saenz, M.T., Garcia, M.D. & Rowe, J.G. 2006. Antimicrobial activity and phytochemical studies of some lichens from south of Spain. Fitoterapia 77: 156– 159. Sedia, E.G. & Ehrenfeld, J.G. 2003. Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100: 447– 458. Sedia, E.G. & Ehrenfeld, J.G. 2005. Soil respiration and potential nitrogen mineralization in lichen, mosses and grass-dominated areas of the New Jersey Pinelands. Oecologia 144: 137– 147. Setälä, H., Berg, M.P. & Jones, T.H. 2005. Trophic structure and functional redundancy in soil communities. In: R.D. Bardgett, M.B. Usher & D.W. Hopkind (eds.) Biological diversity and function in soil. pp. 236– 249. Cambridge University Press, Cambridge, UK. Shipley, B. 2002. Cause and correlation in biology: A user's guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge, UK. Smouse, P.E., Long, J.C. & Sokal, R.R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35: 627– 632. Soule, T., Anderson, I.J., Johnson, S.L, Bates, S.T. & Garcia-Pichel, F. 2009. Archaeal populations in biological soil crusts from arid lands in North America. Soil Biology & Biochemistry 41: 2069– 2074. Stark, S. & Hyvärinen, M. 2003. Are phenolics leaching from the lichen Cladina stellaris sources of energy rather than allelopathic agents for soil microorganisms? Soil Biology & Biochemistry 35: 1381– 1385. Stark, S., Kitöviita, M. & Neumann, A. 2007. The phenolic compounds in Cladonia lichens are not antimicrobial in soils. Oecologia 152: 299– 306. Strayer, D.L., Power, M.E., Fagan, W.F., Pickett, S.T.A. & Belnap, J. 2003. A classification of ecological boundaries. BioScience 53: 723– 729. Tabatabai, M.A. 1982. Soil enzymes. In: R.H. Miller & D.R. Keeney (eds.) Methods of soil analysis, part 2. Chemical and microbiological properties. Agronomy Monograph. 2nd ed, pp. 903– 947. ASA-SSSA, Madison, WI, US. Tabatabai, M.A. & Bremner, J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry 4: 301– 307. Tay, T., Türk, A.O., Yilmaz, M., Türk, H. & Kivanc, M. 2004. Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+) usnic acid, norstictic acid, and protocetraric acid constituents. Zeitschrift für Naturforschung C 59: 384– 388. Thomas, A.D., Hoon, S.R. & Linton, P.E. 2008. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Applied Soil Ecology 39: 254– 263. Turner, M.G., Gardner, R.H. & O'Neill, R.V. 2001. Landscape ecology in theory and practice: pattern and process. Springer-Verlag, New York, NY, US. Valentin, C., d'Herbès, J.M. & Poesen, J. 1999. Soil and water components of banded vegetation patterns. Catena 37: 1– 24. Wardle, D.A, Bonner, K.I., Barker, G.M., Yeates, G.W., Nicholson, K.S., Bardgett, R.D., Watson, R.N. & Ghani, A. 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity and ecosystem properties. Ecological Monographs 69: 535– 568. Yeager, C.M., Kornosky, J.L., Housman, D.C., Grote, E.E., Belnap, J. & Kuske, C.R. 2004. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology 70: 973– 983. Zaady, E., Ben-David, E.A., Sher, Y., Tzirkin, R. & Nejidat, A. 2010. Inferring biological soil crust successional stage using combined PLFA, DGGE, physical and biophysiological analyses. Soil Biology & Biochemistry 42: 842– 849. Zaccone, R., Caruso, G. & Calì, C. 2002. Heterotrophic bacteria in the northern Adriatic Sea: seasonal changes and ectoenzyme profile. Marine Environmental Research 54: 1– 19. Citing Literature Supporting Information Appendix S1. Example DGGE profile. Each lane (1–7) represents a soil sample. Each band represents a bacterial strain. The number of bands was defined as the bacterial richness of each sample. Each strain was labelled with a number follow by a sequential letter (e.g. 1A, 1B … 2A, 2B … 3A, 3B … etc.). Lane M contains the DGGE marker. Appendix S2. Results of effects of community structure in BSC-forming lichens upon the presence and absence of underlying soil bacterial taxa. NMDS: non-metric multidimensional scaling analysis was performed; Bact: different bacterial strains found in our samples; Acno: Acarospora nodulosa; Plsq: Placidium squamulosum; Plpi: Placidium pilosellum; Cla: Cladonia convoluta; Coll: Collema crispum; Dd: Diploschistes diacapsis; End: Endocarpon pusillum; Fg: Fulgensia subbracteata; Lepra: Lepraria crassissima; Psgl: Psora globifera; Psde: Psora decipiens; Pssa: Psora savizcii; Sqca: Squamarina cartilaginea; Scle: Squamarina lentigera; Toal: Toninia albilabra; Tose: Toninia sedifolia; Toto: Toninia toniniana. Appendix S3. Frequency and cover of lichens forming biological soil crusts in the study area. Cover data represent means±SD (n=45). Data from Maestre, F.T., Escolar, C., Martinez, I. and Escudero, A. 2008. Are soil lichen communities structured by biotic interactions? A null model analysis. Journal of Vegetation Science 19: 261–266. Appendix S4. Lichen substances identified in biological soil crust-forming lichens found in our study area. Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. Filename Description JVS_1236_sm_suppmat.doc205.5 KB Supporting info item Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume22, Issue1February 2011Pages 165-174 ReferencesRelatedInformation
Referência(s)