Artigo Acesso aberto Revisado por pares

In situ Tip-Recordings Found No Evidence for an Orco-Based Ionotropic Mechanism of Pheromone-Transduction in Manduca sexta

2013; Public Library of Science; Volume: 8; Issue: 5 Linguagem: Inglês

10.1371/journal.pone.0062648

ISSN

1932-6203

Autores

Andreas Nolte, Nico W. Funk, Latha Mukunda, Petra Gawalek, Achim Werckenthin, Bill S. Hansson, Dieter Wicher, Monika Stengl,

Tópico(s)

Insect Pheromone Research and Control

Resumo

The mechanisms of insect odor transduction are still controversial. Insect odorant receptors (ORs) are 7TM receptors with inverted membrane topology. They colocalize with a conserved coreceptor (Orco) with chaperone and ion channel function. Some studies suggest that insects employ exclusively ionotropic odor transduction via OR-Orco heteromers. Other studies provide evidence for different metabotropic odor transduction cascades, which employ second messenger-gated ion channel families for odor transduction. The hawkmoth Manduca sexta is an established model organism for studies of insect olfaction, also due to the availability of the hawkmoth-specific pheromone blend with its main component bombykal. Previous patch-clamp studies on primary cell cultures of M. sexta olfactory receptor neurons provided evidence for a pheromone-dependent activation of a phospholipase Cβ. Pheromone application elicited a sequence of one rapid, apparently IP3-dependent, transient and two slower Ca2+-dependent inward currents. It remains unknown whether additionally an ionotropic pheromone-transduction mechanism is employed. If indeed an OR-Orco ion channel complex underlies an ionotropic mechanism, then Orco agonist-dependent opening of the OR-Orco channel pore should add up to pheromone-dependent opening of the pore. Here, in tip-recordings from intact pheromone-sensitive sensilla, perfusion with the Orco agonist VUAA1 did not increase pheromone-responses within the first 1000 ms. However, VUAA1 increased spontaneous activity of olfactory receptor neurons Zeitgebertime- and dose-dependently. We conclude that we find no evidence for an Orco-dependent ionotropic pheromone transduction cascade in M. sexta. Instead, in M. sexta Orco appears to be a slower, second messenger-dependent pacemaker channel which affects kinetics and threshold of pheromone-detection via changes of intracellular Ca2+ baseline concentrations.

Referência(s)