Artigo Revisado por pares

Multidimensional Version of the Second Uniform Limit Theorem of Kolmogorov

1990; Society for Industrial and Applied Mathematics; Volume: 34; Issue: 1 Linguagem: Inglês

10.1137/1134003

ISSN

1095-7219

Autores

A. Yu. Zaîtsev,

Tópico(s)

Probability and Statistical Research

Resumo

Previous article Next article Multidimensional Version of the Second Uniform Limit Theorem of KolmogorovA. Yu. ZaitsevA. Yu. Zaitsevhttps://doi.org/10.1137/1134003PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] T. V. Arak, On the approximation of n -fold convolutions of distributions having a negative characteristic function, with associated laws, Theory Probab. Appl., 25 (1980), 221–243 10.1137/1125033 0456.60012 LinkGoogle Scholar[2] T. V. Arak and , A. Yu. Zaitsev, Uniform limit theorems for sums of independent random variables, Trudy Mat. Inst. Steklov., 174 (1986), 214–, (In Russian.) 88m:60072 0606.60028 Google Scholar[3] A. A. Borovkov, Wahrscheinlichkeitstheorie, Birkhäuser Verlag, Basel, 1976xi+264, Eine Einfuehrung 53:14561 0345.60002 Google Scholar[4] Yu. R. Gabovich, The stability of the characterization of the multivariate normal distribution in the Skitovič-Darmois theorem, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 61 (1976), 5–16, 135, (In Russian.) 55:1612 0337.60019 Google Scholar[5] R. L. Dobrushin, The specification of a system of random variables with the aid of conditional distributions, Theory Probab. Appl., 15 (1970), 458–486 10.1137/1115049 LinkGoogle Scholar[6] C.-G. Esseen, On the concentration function of a sum of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9 (1968), 290–308 37:6974 0195.19303 CrossrefGoogle Scholar[7] A. Yu. Zaitsev, Approximation of distributions of sums of independent random vectors by infinitely divisible distributions, Dokl. Akad. Nauk SSSR, 253 (1980), 277–279, (In Russian.) 83g:60036 Google Scholar[8] A. Yu. Zai˘ tsev, Approximation by infinitely divisible laws in the multidimensional case, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 130 (1983), 89–103, (In Russian.) 85d:60057 Google Scholar[9] A. Yu. Zaitsev, On the accuracy of the approximations of distributions of sums of independent random variables different from zero with a small probability, with associated laws, Theory Probab. Appl., 28 (1983), 657–659 10.1137/1128065 LinkGoogle Scholar[10] A. Yu. Zaitsev, Several remarks on approximation of distributions of sums of independent terms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 136 (1984), 48–57, (In Russian) 86b:60032 Google Scholar[11] A. Yu. Zaitsev, Approximation of convolutions of multidimensional distributions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 142 (1985), 68–80, 196, (In Russian.) 86h:60062 Google Scholar[12] A. Yu. Zaitsev, Estimates of the Lévy–Prokhorov distance in the multivariate central limit theorem for random vectors with finite exponential moments, Theory Probab. Appl., 31 (1986), 203–220 10.1137/1131028 LinkGoogle Scholar[13] A. Yu. Zaitsev, On the uniform approximation of distribution functions of sums of independent random variables, Theory Probab. Appl., 32 (1987), 40–47 10.1137/1132003 LinkGoogle Scholar[14] A. Yu. Zaitsev, On the multivariate generalization of the method of triangular functions, Zap. Nauchn. Sem. LOMI, 158 (1987), 81–104, (In Russian.) Google Scholar[15] A. Yu. Zaitsev, A multivariate variant of the second uniform limit theorem of Kolmogorov, School–XXI Colloquium on Probability Theory and Mathematical Statistics (Bakuriani, 1987), summaries of reports, Metsniereba, Tbilisi, 1987, (In Russian.) Google Scholar[16] A. Yu. Zaitsev, On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein's inequality conditions, Probab. Theory Related Fields, 74 (1987), 535–566 88f:60050 CrossrefGoogle Scholar[17] A. Yu. Zaitsev and , T. V. Arak, On the rate of convergence in the second uniform limit theorem of Kolmogorov, Theory Probab. Appl., 28 (1983), 351–374 10.1137/1128028 LinkGoogle Scholar[18] V. M. Zolotarev, Modern Theory of Summation of Independent Random Variables, Nauka, Moscow, 1986, (In Russian.) Google Scholar[19] A. N. Kolmogorov, Two uniform limit theorems for sums of independent random variables, Theory Probab. Appl., 1 (1956), 384–394 10.1137/1101030 LinkGoogle Scholar[20] L. LeCam, An approximation theorem for the Poisson binomial distribution, Pacific J. Math., 10 (1960), 1181–1197 25:5567 CrossrefGoogle Scholar[21] L. LeCam, On the distribution of sums of independent random variablesProc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif., Springer-Verlag, New York, 1965, 179–202, in Bernoulli, Bayes, Laplace (anniversary volume) 33:8011 0139.35203 CrossrefGoogle Scholar[22] L. LeCam, The central limit theorem around 1935, Statist. Sci., 1 (1986), 78–96 87h:60054 CrossrefGoogle Scholar[23] Yu. V. Prokhorov, Asymptotic behavior of the binomial distribution, Uspehi Matem. Nauk (N.S.), 8 (1953), 135–142, (In Russian.) 15,138g Google Scholar[24] William Feller, An introduction to probability theory and its applications. Vol. I, Third edition, John Wiley & Sons Inc., New York, 1968xviii+509 37:3604 0155.23101 Google Scholar[25] W. Hengartner and , R. Theodorescu, Concentration functions, Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973xii+139 48:9781 0323.60015 Google Scholar[26] J. E. Yukich, The convolution metric $d\sb g$, Math. Proc. Cambridge Philos. Soc., 98 (1985), 533–540 87d:60010 0576.60006 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails On Alternative Approximating Distributions in the Multivariate Version of Kolmogorov's Second Uniform Limit TheoremF. Götze and A. Yu. Zaitsev5 May 2022 | Theory of Probability & Its Applications, Vol. 67, No. 1AbstractPDF (451 KB)Об альтернативных аппроксимирующих распределениях в многомерном варианте второй равномерной предельной теоремы Колмогорова21 January 2022 | Теория вероятностей и ее применения, Vol. 67, No. 1 Cross Ref Compound Poisson Approximations in $$\ell _p$$-norm for Sums of Weakly Dependent Vectors20 September 2020 | Journal of Theoretical Probability, Vol. 34, No. 4 Cross Ref Poisson approximationProbability Surveys, Vol. 16, No. none Cross Ref Toward the History of the Saint Petersburg School of Probability and Statistics. I. Limit Theorems for Sums of Independent Random Variables16 June 2018 | Vestnik St. Petersburg University, Mathematics, Vol. 51, No. 2 Cross Ref On Bounds for Characteristic Functions of Powers of Asymptotically Normal VariablesYu. V. Prokhorov, F. Götze, and V. V. Ulyanov15 May 2018 | Theory of Probability & Its Applications, Vol. 62, No. 1AbstractPDF (437 KB)Arak Inequalities for Concentration Functions and the Littlewood--Offord ProblemF. Götze, Yu. S. Eliseeva, and A. Yu. Zaitsev15 May 2018 | Theory of Probability & Its Applications, Vol. 62, No. 2AbstractPDF (454 KB)Об оценках для характеристических функций степеней асимптотически нормальных случайных величинТеория вероятностей и ее применения, Vol. 62, No. 1 Cross Ref Неравенства Арака для функций концентрации и проблема Литтлвуда - ОффордаТеория вероятностей и ее применения, Vol. 62, No. 2 Cross Ref Limit Theorems and Phase Transitions for Two Models of Summation of Independent Identically Distributed Random Variables with a ParameterM. Grabchak and S. A. Molchanov9 June 2015 | Theory of Probability & Its Applications, Vol. 59, No. 2AbstractPDF (247 KB)Compound Poisson approximations for symmetric vectorsJournal of Multivariate Analysis, Vol. 123 Cross Ref Точность сильной гауссовской аппроксимации для сумм независимых случайных векторовУспехи математических наук, Vol. 68, No. 4(412) Cross Ref On Asymptotic Proximity of Distributions22 July 2008 | Journal of Theoretical Probability, Vol. 22, No. 1 Cross Ref On variational bounds in the compound Poisson approximation of the individual risk modelInsurance: Mathematics and Economics, Vol. 40, No. 3 Cross Ref Lower-Bound Estimates for Poisson-Type ApproximationsLithuanian Mathematical Journal, Vol. 45, No. 4 Cross Ref Kerstan's method for compound Poisson approximationThe Annals of Probability, Vol. 31, No. 4 Cross Ref Compound Poisson approximations for sums of discrete nonlattice variables1 July 2016 | Advances in Applied Probability, Vol. 35, No. 1 Cross Ref An Asymptotic Representation for the Likelihood Ratio for Multidimensional Samples with Discontinuous DesitiesI. S. Borisov and D. V. Mironov25 July 2006 | Theory of Probability & Its Applications, Vol. 45, No. 2AbstractPDF (172 KB)Approximation of the generalized Poisson binomial distribution: Asymptotic expansionsLithuanian Mathematical Journal, Vol. 37, No. 1 Cross Ref Volume 34, Issue 1| 1990Theory of Probability & Its Applications History Submitted:23 January 1987Published online:17 July 2006 InformationCopyright © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1134003Article page range:pp. 108-128ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics

Referência(s)