Loss of expression of thep16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage
1997; Wiley; Volume: 74; Issue: 3 Linguagem: Inglês
10.1002/(sici)1097-0215(19970620)74
ISSN1097-0215
AutoresLauri Talve, Ilari Sauroja, Yrjö Collan, Kari Punnonen, T Ekfors,
Tópico(s)Bladder and Urothelial Cancer Treatments
ResumoAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The G1/S checkpoint of the cell cycle is regulated by p16, p53 and RB tumor suppressor genes. Loss of expression of the p16INK4 tumor suppressor protein, the product of the CDKN2 gene, has been associated with a wide variety of human malignancies. Mutations, loss of heterozygosity and deletions of the CDKN2 locus have been reported in sporadic and familial cutaneous malignant melanomas (CMM). To investigate the role of the alterations of p16 expression in melanoma, we evaluated by immunohistochemistry the p16 expression and cell proliferation in 79 primary CMM and 10 benign melanocytic nevi (BMN). Forty-six melanomas (58%) and all BMN were found to be p16 positive; 33 melanomas (42%) were considered p16 negative. The extent of invasion according to Clark was significantly higher in p16-negative tumors than in p16-positive tumors. Cell proliferation as expressed by the proportion of positive cells in Ki-67 immunostaining was found to be significantly higher in p16-negative tumors than in p16-positive tumors, although there was no significant difference in the mitotic index between p16-positive and p16-negative tumors. In p16-positive tumors, the number of Ki-67-positive cells correlated with the mitotic index; in p16-negative tumors, there was no correlation between these parameters. Our data suggest that loss of p16 expression is more common in advanced melanomas, and that G1/S checkpoint regulation is disrupted in p16-negative melanomas. Our results show that loss of p16 expression is a common event in primary melanomas, which further substantiates the role of p16 as a major tumor suppressor. Int. J. Cancer 74:255-259, 1997. © 1997 Wiley-Liss, Inc. References Arap, W., Nishikawa, R., Furnari, F. B., Cavenee, W. K. and Huang, H.-J. S., Replacement of the p16/CDKN2 gene suppresses human glioma cell growth. Cancer Res., 55, 1351– 1354 (1995). Cairns, P. and 20 others: Frequency of homozygous deletion at p16/ CDKN2 in primary human tumours. Nature (Genet.), 11, 210– 212 (1995). Collan, Y., General principles of grading lesions in diagnostic histopathology. Pathol. Res. Pract., 185, 539– 543 (1989). Geradts, J., Kratzke, R. A., Niehans, G. A. and Lincoln, C. E., Immunohistochemical detection of the cyclin-dependent kinase inhibitor 2/multiple tumor suppressor gene 1 (CDKN2/MTS1) product p16INK4A in archival human solid tumors: correlation with retinoblastoma protein expression. Cancer Res., 55, 6006– 6011 (1995). Familial melanoma. Nature (Genet.), 8, 15– 21 (1994). Geradts, J. and Wilson, P. A., High frequency aberrant p16INK4Aexpression in human breast cancer. Amer. J. Pathol., 149, 15– 20 (1996). Grana, X. and Reddy, E. P., Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth pressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 11, 211– 219 (1995). Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S. and Peters, G., Regulation of p16CDKN2 expressi nd its implications for cell immortalization and senescence. Mol. cell. Biol., 16, 859– 867 (1996). Hussussian, C. J., Struewing, J. P., Goldstein, A. M., Higgins, P. A. T., Ally, D. S., Sheahan, M. D., Clark, W. H., Tucker, M. A. and Dracopoli, N. C., Germline p 16 mutations in familial melanoma. Nature (Genet.), 8, 15– 21 (1994) Jin, X., Nguyen, D., Zhang, W.-W., Kyritsis, A. and Roth, J. A., Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Cancer Res., 55, 3250– 3253 (1995). Kamb, A. and 23 others: Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature (Genet.), 8, 22– 26 (1994). Koh, J., Enders, G. H., Dynlacht, B. D. and Harlow, E., Tumor derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature (Lond.), 375, 506– 510 (1995). Li, Y.-J., Hoang-Xuan, K., Delattre, J.-Y., Poisson, M., Thomas, G. and Hamelin, R., Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin-dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas. Oncogene, 11, 597– 600 (1995). Lilischkis, R., Sarcevic, B., Kennedy, C., Warlters, A. and Sutherland, R.: Cancer-associated missense and deletion mutations impair p16/INK4 CDK inhibitory activity. Int. J. Cancer, 66, 249– 254 (1996). Liu, L., Lassam, N. J., Slingerland, J. M., Bailey, D., Cole, D., Jenkins, R. and Hogg, D., Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene, 11, 405– 412 (1995). Liu, Q., Neuhausen, S., McClure, M., Frye, C., Weaver-Feldhaus, J., Gruis, N. A., Eddington, K., Allanuis-Turner, M. J., Skolnick, M. H., Fujimura, F. K. and Kamb, A., CDKN2 (MTS1) tumor suppressor gene mutations in human tumor cell lines. Oncogene, 10, 1061– 1067 (1995). Lo, K.-W., Huang, D. P. and Lau, K.-M., p16 gene alteration in nasopharyngeal carcinoma. Cancer Res., 55, 2039– 2043 (1995). Lois, A. F., Cooper, L. T., Geng, Y., Nobori, T. and Carson, D., Expression of the p16 and p15 cyclin-dependent kinase inhibitors in lymphocyte activation and neuronal differentiation. Cancer Res., 55, 4010– 4013 (1995). Lukas, J., Parry, D., Aagaard, L., Mann, D. J., Bartkova, J., Strauss, M., Peters, G. and Bartek, J., Retinoblastoma-protein-dependent cellcycle inhibition by the tumour suppressor p16. Nature (Lond.), 375, 503– 506 (1995). Nagakawa, K., Conrad, N. K., Williams, J. P., Johnson, B. E. and Kelley, M. J., Mechanism of inactivation of CDKN2 and MTS2 in non-small cell lung cancer and association with advanced stage. Oncogene, 11, 1843– 1851 (1995). Okamoto, A., Demetrick, D. J., Spillane, E. A., Hagiwara, K., Hussain, S. P., Bennett, W. H., Forrester, K., Gerwin, B., Serrano, M., Beach, D. H. and Harris, C. C., Mutations and altered expression of p16INK4 in human cancer. Proc. nat. Acad. Sci. (Wash.), 91, 11045– 11049 (1994). Pollock, P. M., Yu, F., Qiu, L., Parsons, P. G. and Hayward, N. K., Evidence for u. v. induction of CDKN2 mutations in melanoma cell lines. Oncogene, 11, 663– 668 (1995). Ranade, K., Hussussian, C. J., Sikorski, R. S., Varmus, H. E., Goldstein, A. M., Tucker, M. A., Serrano, M., Hannon, G. J., Beach, D. and Dracopoli, N. C., Mutations associated with familial melanoma impair p16INK4 function. Nature (Genet.), 10, 114– 116 (1995). Reed, J. A., Loganzo, F., Shea, C. R., Walker, G. J., Flores, J. F., Glendening, J. M., Bogdany, J. K., Shiel, M. J., Haluska, F. G., Fountain, J. W. and Albino, A. P., Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. Cancer Res., 55, 2713– 2718 (1995). Reymond, A. and Brent, R., p16 proteins from melanoma-prone families are deficient in binding to Cdk4. Oncogene, 11, 1173– 1178 (1995). Saenz-Santamaria, M. C., McNutt, N. S. and Shea, C. R., Immunohistochemical expression of retinoblastoma protein in cutaneous melanomas. Brit. J. Dermatol., 133, 890– 895 (1995). Shapiro, G. I. and Rollins, B. J., p16INK4A as a human tumor suppressor. Biochim. biophys. Acta, 1242, 165– 169 (1996). Sherr, C. J. and Roberts, J. M., Inhibitors of mammalian G1 cyclindependent kinases. Genes Develop., 9, 1149– 1163 (1995). Smith-Sørensen, B. and Hovig, E., CDKN2 (p16INK4A) somatic and germline mutations. Hum. Mutation, 7, 294– 303 (1996). Sonoda, Y., Yoshimoto, T. and Sekiya, T., Homozygous deletion of the MTS1/p16 and MTS2/p15 genes and amplification of the CDK4 gene in glioma. Oncogene, 11, 2145– 2149 (1995). Soucek, T., Pusch, O., Hengstschäger-Ottnad, E., Wawra, E., Bernaschek, G. and Hengstschäger, M., Expression of the cyclindependent kinase inhibitor p16 during the ongoing cell cycle. FEBS Lett., 373, 164– 169 (1995). Svanholm, H., Starklint, H., Gundersen, H. J. G., Fabricius, J., Barlebo, H. and Olsen, S., Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. Acta pathol. microbiol. immunol. Scand., 97, 689– 698 (1989). Tam, S. W., Shay, J. W. and Pagano, M., Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16ink4. Cancer Res., 54, 5816– 5814 (1994). Ueki, K., Ono, Y., Henson, J. W., Efird, J. T., von Deimling, A. and Louis, D. N., CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res., 56, 150– 153 (1996). Washimi, O., Nagatake, M., Osada, H., Ueda, R., Koshokawa, T., Seki, T., Toshitada, T. and Takahashi, T., In vivo occurrence of p16 (MTS1) and p15 (MTS2) alterations preferentially in non-small cell lung cancers. Cancer Res., 55, 514– 517 (1995). Weiss, J., Heine, M., Arden, K. C., Korner, B., Pilch, H., Herbst, R. A. and Jung, E. G., Mutation and expression of TP53 in malignant melanomas. Rec. Res. Cancer Res., 139, 137– 154 (1995). Xiao, S., Li, D., Vijg, J., Sugarbaker, D. J., Corson, J. M. and Fletcher, J. A., Co-deletion of p15 and p16 in primary malignant mesothelioma. Oncogene, 11, 511– 515 (1995). Citing Literature Volume74, Issue320 June 1997Pages 255-259 ReferencesRelatedInformation
Referência(s)