Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata
2014; Microbiology Society; Volume: 160; Issue: 5 Linguagem: Inglês
10.1099/mic.0.076182-0
ISSN1465-2080
AutoresLi‐Hung Chen, Siwy Ling Yang, Kuang‐Ren Chung,
Tópico(s)Plant Stress Responses and Tolerance
ResumoThe ability of the necrotrophic fungus Alternaria alternata to detoxify reactive oxygen species (ROS) is crucial for pathogenesis to citrus. We report regulation of siderophore-mediated iron acquisition and ROS resistance by the NADPH oxidase (NOX), the redox activating yes-associated protein 1 (YAP1) regulator, and the high-osmolarity glycerol 1 (HOG1) mitogen-activated protein kinase (MAPK). The A. alternata nonribosomal peptide synthetase (NPS6) is essential for the biosynthesis of siderophores, contributing to iron uptake under low-iron conditions. Fungal strains impaired for NOX, YAP1, HOG1 or NPS6 all display increased sensitivity to ROS. Exogenous addition of iron at least partially rescues ROS sensitivity seen for NPS6, YAP1, HOG1, and NOX mutants. Importantly, expression of the NPS6 gene and biosynthesis of siderophores are regulated by NOX, YAP1 and HOG1, supporting a functional link among these regulatory pathways. Although iron fully rescues H 2 O 2 sensitivity seen in mutants impaired for the response regulator SKN7, neither expression of NPS6 nor biosynthesis of siderophores is controlled by SKN7. Our results indicate that the acquisition of environmental iron has profound effects on ROS detoxification.
Referência(s)