Artigo Revisado por pares

NEURAL CIRCUITS OF THE CEREBELLUM: HYPOTHESIS FOR FUNCTION

2011; Imperial College Press; Volume: 10; Issue: 03 Linguagem: Inglês

10.1142/s0219635211002762

ISSN

1757-448X

Autores

Egidio D’Angelo,

Tópico(s)

Neural dynamics and brain function

Resumo

Journal of Integrative NeuroscienceVol. 10, No. 03, pp. 317-352 (2011) ArticlesNo AccessNEURAL CIRCUITS OF THE CEREBELLUM: HYPOTHESIS FOR FUNCTIONEGIDIO D'ANGELOEGIDIO D'ANGELODepartment of Physiology, University of Pavia, Via Forlanini 6, I-27100, Pavia, ItalyConsorzio Interuniversitario per le Scienze Fisiche della, Materia (CNISM), Via Bassi 6, I-27100 Pavia, ItalyBrain Connectivity Center, Istituto Neurologico IRCCS Fondazione C. Mondino, Via Mondino 2, I-27100 Pavia, Italyhttps://doi.org/10.1142/S0219635211002762Cited by:34 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractThe rapid growth of cerebellar research is going to clarify several aspects of cellular and circuit physiology. However, the concepts about cerebellar mechanisms of function are still largely related to clinical observations and to models elaborated before the last discoveries appeared. In this paper, the major issues are revisited, suggesting that previous concepts can now be refined and modified. The cerebellum is fundamentally involved in timing and in controlling the ordered and precise execution of motor sequences. The fast reaction of the cerebellum to the inputs is sustained by specific cellular mechanisms ensuring precision on the millisecond scale. These include burst–burst reconversion in the granular layer and instantaneous frequency modulation on the 100-Hz band in Purkinje and deep cerebellar nuclei cells. Precisely timed signals can be used for perceptron operations in Purkinje cells and to establish appropriate correlations with climbing fiber signals inducing learning at parallel fiber synapses. In the granular layer, plasticity turns out to be instrumental to timing, providing a conceptual solution to the discrepancy between cerebellar learning and timing. The granular layer sub-circuit can be tuned by long-term synaptic plasticity and synaptic inhibition to delay the incoming signals over a 100-ms range. For longer sequences, large circuit sections can be entrained into coherent activity in 100-ms cycles. These dynamic aspects, which have not been accounted for by original theories, could in fact represent the essence of cerebellar functioning. It is suggested that the cerebellum can, in this way, operate the realignment of temporally incongruent signals, allowing their binding and pattern recognition in Purkinje cells. The demonstration of these principles, their behavioral relevance and their relationship with internal model theories represent a challenge for future cerebellar research.Keywords:Cerebellummotor controlataxiatimingLTPLTD References C. D. Aizenman and D. J. Linden, J. Neurophysiol. 82, 1697 (1999). Crossref, Medline, ISI, Google ScholarC. D. Aizenman and D. J. Linden, Nat. Neurosci. 3, 109 (2000). Crossref, Medline, ISI, Google ScholarJ. Albus, Math. Biosci. 10, 25 (1971), DOI: 10.1016/0025-5564(71)90051-4. Crossref, Google ScholarG. Allenet al., Science 275, 1940 (1997), DOI: 10.1126/science.275.5308.1940. Crossref, Medline, ISI, Google ScholarG. Allen and E. Courchesne, Mol. Psychiatry. 3, 207 (1998), DOI: 10.1038/sj.mp.4000395. Crossref, Medline, ISI, Google ScholarK. Angeloet al., J. Neurosci. 27, 8643 (2007), DOI: 10.1523/JNEUROSCI.5284-06.2007. Crossref, Medline, ISI, Google ScholarR. Apps and R. Hawkes, Nat. Rev. Neurosci. 10, 670 (2009), DOI: 10.1038/nrn2698. Crossref, Medline, ISI, Google Scholar M. A. Arbib , P. Erdi and J. Szentagothai , Neural organization: Structure, function, and dynamics ( MIT Press , Cambridge, MA, USA , 1998 ) . Google ScholarA. Arenzet al., Science 321, 977 (2008), DOI: 10.1126/science.1158391. Crossref, Medline, ISI, Google ScholarS. Armanoet al., J. Neurosci. 20, 5208 (2000). Crossref, Medline, ISI, Google ScholarA. Baginskaset al., Eur. J. Neurosci. 29, 87 (2009), DOI: 10.1111/j.1460-9568.2008.06566.x. Crossref, Medline, ISI, Google ScholarJ. Bao, K. Reim and T. Sakaba, J. Neurosci. 30, 8171 (2010), DOI: 10.1523/JNEUROSCI.0276-10.2010. Crossref, Medline, ISI, Google ScholarY. Baumel, G. A. Jacobson and D. Cohen, Front Cell Neurosci. 3, 14 (2009), DOI: 10.3389/neuro.03.014.2009. Medline, Google ScholarT. V. Bliss and G. L. Collingridge, Nature 361, 31 (1993), DOI: 10.1038/361031a0. Crossref, Medline, ISI, Google ScholarT. V. Bliss and T. Lomo, J. Physiol. 232, 331 (1973). Crossref, Medline, ISI, Google ScholarJ. M. Bower, Prog. Brain. Res. 114, 463 (1997). Crossref, Medline, ISI, Google ScholarJ. M. Bower, Ann. N. Y. Acad. Sci. 978, 135 (2002). Crossref, Medline, ISI, Google ScholarJ. M. Bower, Front Cell Neurosci. 4, (2010). Medline, ISI, Google ScholarJ. M. Bower and D. C. Woolston, J. Neurophysiol. 49, 745 (1983). Crossref, Medline, ISI, Google ScholarV. Braitenberg, D. Heck and F. Sultan, Behav. Brain. Sci. 20, 229 (1997). Crossref, Medline, ISI, Google ScholarI. E. Brown and J. M. Bower, J. Neurosci. 22, 6819 (2002). Crossref, Medline, ISI, Google ScholarN. Brunelet al., Neuron 43, 745 (2004), DOI: 10.1016/j.neuron.2004.08.023. Medline, ISI, Google Scholar G. Buzsaki , Rhythms of the Brain ( Oxford University Press , New York , 2006 ) . Crossref, Google ScholarN. L. Cerminara and R. Apps, Cerebellum 10, 484 (2010), DOI: 10.1007/s12311-010-0209-2. Crossref, Medline, ISI, Google ScholarP. Chadderton, T. W. Margrie and M. Hausser, Nature 428, 856 (2004), DOI: 10.1038/nature02442. Crossref, Medline, ISI, Google ScholarX. Chenet al., Proc. Natl. Acad. Sci. USA 107, 12323 (2010), DOI: 10.1073/pnas.1001745107. Crossref, Medline, ISI, Google ScholarE. Chorev, Y. Yarom and I. Lampl, J. Neurosci. 27, 5043 (2007), DOI: 10.1523/JNEUROSCI.5187-06.2007. Crossref, Medline, ISI, Google ScholarB. A. Clarket al., Nat. Neurosci. 8, 137 (2005), DOI: 10.1038/nn1390. Crossref, Medline, ISI, Google ScholarM. Coesmanset al., Neuron 44, 691 (2004), DOI: 10.1016/j.neuron.2004.10.031. Crossref, Medline, ISI, Google ScholarD. Cohen and Y. Yarom, Proc. Natl. Acad. Sci. USA 95, 15032 (1998), DOI: 10.1073/pnas.95.25.15032. Crossref, Medline, ISI, Google ScholarS. Colnaghiet al., Cerebellum (2011). Google ScholarS. Colnaghiet al., Funct. Neurol. 25, 165 (2010). Medline, ISI, Google ScholarE. Courchesne and G. Allen, Learn. Mem. 4, 1 (1997), DOI: 10.1101/lm.4.1.1. Crossref, Medline, ISI, Google ScholarR. Courtemanche, P. Chabaud and Y. Lamarre, Front Cell Neurosci. 3, 6 (2009), DOI: 10.3389/neuro.03.006.2009. Medline, ISI, Google ScholarE. D'Angelo, Front. Neurosci. 2, 35 (2008), DOI: 10.3389/neuro.01.008.2008. Crossref, Medline, ISI, Google ScholarE. D'Angelo, Funct. Neurol. 25, 125 (2010). Medline, ISI, Google ScholarE. D'Angelo and C. I. De Zeeuw, Trends. Neurosci. 32, 30 (2009). Crossref, Medline, ISI, Google ScholarE. D'Angeloet al., Neuroscience 162, 805 (2009), DOI: 10.1016/j.neuroscience.2009.01.048. Crossref, Medline, ISI, Google ScholarE. D'Angeloet al., Brain. Res. Rev. 66, 5 (2011), DOI: 10.1016/j.brainresrev.2010.10.002. Crossref, Medline, Google ScholarE. D'Angeloet al., J. Neurosci. 21, 759 (2001). Crossref, Medline, ISI, Google ScholarE. D'Angeloet al., J. Neurophysiol. 81, 277 (1999). Crossref, Medline, ISI, Google ScholarJ. T. Davie, B. A. Clark and M. Hausser, J. Neurosci. 28, 7599 (2008), DOI: 10.1523/JNEUROSCI.0559-08.2008. Crossref, Medline, ISI, Google ScholarE. De Schutter, J. Neurophysiol. 80, 504 (1998). Crossref, Medline, ISI, Google ScholarE. De Schutter and J. M. Bower, J. Neurophysiol. 71, 375 (1994). Crossref, Medline, ISI, Google ScholarE. De Schutter and J. M. Bower, J. Neurophysiol. 71, 401 (1994). Crossref, Medline, ISI, Google ScholarC. de Solageset al., Neuron 58, 775 (2008), DOI: 10.1016/j.neuron.2008.05.008. Crossref, Medline, ISI, Google ScholarC. I. De Zeeuw, F. E. Hoebeek and M. Schonewille, Neuron 58, 655 (2008), DOI: 10.1016/j.neuron.2008.05.019. Crossref, Medline, ISI, Google ScholarC. I. De Zeeuwet al., Nat. Rev. Neurosci. 12, 327 (2011), DOI: 10.1038/nrn3011. Crossref, Medline, ISI, Google ScholarC. I. De Zeeuw and C. H. Yeo, Curr. Opin. Neurobiol. 15, 667 (2005), DOI: 10.1016/j.conb.2005.10.008. Crossref, Medline, ISI, Google ScholarP. Dean and J. Porrill, J. Physiol. (2011). Google ScholarP. Deanet al., Nat. Rev. Neurosci. 11, 30 (2010), DOI: 10.1038/nrn2756. Crossref, Medline, ISI, Google ScholarA. D'Errico, F. Prestori and E. D'Angelo, J. Physiol. 587, 5843 (2009), DOI: 10.1113/jphysiol.2009.177162. Crossref, Medline, ISI, Google ScholarA. Devor and Y. Yarom, J. Neurophysiol. 87, 3059 (2002). Crossref, Medline, ISI, Google ScholarJ. Diedrichsen, R. Shadmehr and R. B. Ivry, Trends. Cogn. Sci. 14, 31 (2010), DOI: 10.1016/j.tics.2009.11.004. Crossref, Medline, ISI, Google ScholarS. Dieudonne, J. Physiol. 510, 845 (1998), DOI: 10.1111/j.1469-7793.1998.845bj.x. Crossref, Medline, ISI, Google ScholarS. Diwakaret al., PLOS One (2011). Google ScholarS. Diwakaret al., J. Neurophysiol. 101, 519 (2009), DOI: 10.1152/jn.90382.2008. Crossref, Medline, ISI, Google ScholarG. P. Dugueet al., Neuron 61, 126 (2009). Crossref, Medline, ISI, Google ScholarT. J. Ebner and S. Pasalar, Cerebellum 7, 583 (2008), DOI: 10.1007/s12311-008-0059-3. Crossref, Medline, ISI, Google ScholarJ. Eccles, R. Llinàs and K. Sasaki, Nature 204, 1265 (1964). Crossref, Medline, ISI, Google ScholarJ. C. Eccles, J. Physiol. 229, 1 (1973). Crossref, Medline, ISI, Google Scholar J. C. Eccles , M. Ito and J. Szentagothai , The Cerebellum as a Neuronal Machine ( Springer-Verlag , Berlin, Heidelberg, New York , 1967 ) . Crossref, Google ScholarJ. C. Eccles, R. Llinas and K. Sasaki, J. Physiol. 182, 268 (1966). Crossref, Medline, ISI, Google ScholarJ. C. Eccles, K. Sasaki and P. Strata, Exp. Brain. Res. 3, 58 (1967). Medline, ISI, Google ScholarM. Farrant and Z. Nusser, Nat. Rev. Neurosci. 6, 215 (2005), DOI: 10.1038/nrn1625. Crossref, Medline, ISI, Google ScholarL. Fortiet al., J. Physiol. 574, 711 (2006), DOI: 10.1113/jphysiol.2006.110858. Medline, ISI, Google ScholarM. Fujita, Biol. Cybern. 45, 195 (1982), DOI: 10.1007/BF00336192. Crossref, Medline, ISI, Google ScholarD. Gallet al., J. Neurosci. 25, 4813 (2005), DOI: 10.1523/JNEUROSCI.0410-05.2005. Crossref, Medline, ISI, Google ScholarE. Galliano, P. Mazzarello and E. D'Angelo, J. Physiol. (2010). Medline, ISI, Google ScholarJ. H. Gaoet al., Science 272, 545 (1996), DOI: 10.1126/science.272.5261.545. Crossref, Medline, ISI, Google ScholarJ. Ghajar and R. B. Ivry, Neuroscientist 15, 232 (2009), DOI: 10.1177/1073858408326429. Crossref, Medline, ISI, Google ScholarM. Glickstein and K. Doron, Cerebellum 7, 589 (2008), DOI: 10.1007/s12311-008-0074-4. Crossref, Medline, ISI, Google ScholarM. Glickstein, F. Sultan and J. Voogd, Cortex 47, 59 (2009), DOI: 10.1016/j.cortex.2009.09.001. Crossref, Medline, ISI, Google ScholarJ. Grosset al., Neuroimage 26, 91 (2005), DOI: 10.1016/j.neuroimage.2005.01.025. Crossref, Medline, ISI, Google ScholarC. Hanselet al., Neuron 51, 835 (2006), DOI: 10.1016/j.neuron.2006.08.013. Crossref, Medline, ISI, Google ScholarC. Hansel, D. J. Linden and E. D'Angelo, Nat. Neurosci. 4, 467 (2001). Crossref, Medline, ISI, Google ScholarM. J. Hartmann and J. M. Bower, J. Neurophysiol. 80, 1598 (1998). Crossref, Medline, ISI, Google ScholarM. J. Hartmann and J. M. Bower, J. Neurosci. 21, 3549 (2001). Crossref, Medline, ISI, Google Scholar D. O. Hebb , The Organization of Behavior: A Neuropsychological Theory ( Psychology Press , London , 1949 ) . Google ScholarS. Herculano-Houzel, Front. Neuroanat. 4, 12 (2010). Medline, ISI, Google Scholar Imamizu H, Kawato M, Cerebellar internal models: Implications for the dexterous use of tools, Cerebellum, 2010 Dec 2 . Google ScholarH. Imamizuet al., J. Neurosci. 24, 1173 (2004), DOI: 10.1523/JNEUROSCI.4011-03.2004. Crossref, Medline, ISI, Google ScholarH. Imamizuet al., Nature 403, 192 (2000), DOI: 10.1038/35003194. Crossref, Medline, ISI, Google ScholarP. Isope and B. Barbour, J. Neurosci. 22, 9668 (2002). Crossref, Medline, ISI, Google ScholarP. Isope, S. Dieudonne and B. Barbour, Ann. N Y Acad. Sci. 978, 164 (2002). Crossref, Medline, ISI, Google Scholar Isope P, Hildebrand ME, Snutch TP, Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons, Cerebellum, 2010 . Google ScholarM. Ito, Adv. Neurol. 21, 59 (1978). Medline, Google Scholar M. Ito , The Cerebellum and Neural Control ( Raven Press , New York , 1984 ) . Google ScholarM. Ito, Prog. Neurobiol. 78, 272 (2006), DOI: 10.1016/j.pneurobio.2006.02.006. Crossref, Medline, ISI, Google ScholarM. Ito, Nat. Rev. Neurosci. 9, 304 (2008), DOI: 10.1038/nrn2332. Crossref, Medline, ISI, Google ScholarM. Ito, Neuroscience 162, 666 (2009), DOI: 10.1016/j.neuroscience.2009.01.019. Crossref, Medline, ISI, Google ScholarM. Ito, M. Sakurai and P. Tongroach, J. Physiol. 324, 113 (1982). Crossref, Medline, ISI, Google ScholarR. B. Ivry and J. V. Baldo, Curr. Opin. Neurobiol. 2, 212 (1992), DOI: 10.1016/0959-4388(92)90015-D. Crossref, Medline, Google ScholarR. B. Ivry and R. M. Spencer, Brain 127, E13 (2004), DOI: 10.1093/brain/awh226. Crossref, Medline, Google ScholarR. B. Ivryet al., Ann. N Y Acad. Sci. 978, 302 (2002). Crossref, Medline, ISI, Google ScholarG. A. Jacobsonet al., Proc. Natl. Acad. Sci. USA 106, 3579 (2009), DOI: 10.1073/pnas.0806661106. Crossref, Medline, ISI, Google ScholarG. A. Jacobson, D. Rokni and Y. Yarom, Trends Neurosci. 31, 617 (2008), DOI: 10.1016/j.tins.2008.09.005. Crossref, Medline, ISI, Google Scholar Jaeger D, Mini-review: Synaptic integration in the cerebellar nuclei-perspectives from dynamic clamp and computer simulation studies, Cerebellum, 2011 . Google ScholarJ. D. Schmahmann and D. N. Pandya, The Cerebellum and Cognition, International Review of Neurobiology, ed. J. D. Schmahmann (Academic Press, San Diego, 1997) pp. 31–60. Google ScholarH. Jorntell and C. F. Ekerot, J. Neurosci. 26, 11786 (2006), DOI: 10.1523/JNEUROSCI.2939-06.2006. Crossref, Medline, ISI, Google ScholarB. E. Kalmbachet al., J. Neurosci. 2025 (2011), DOI: 10.1523/JNEUROSCI.4212-10.2011. Medline, ISI, Google ScholarM. Kase, D. C. Miller and H. Noda, J. Physiol. 300, 539 (1980). Crossref, Medline, ISI, Google ScholarM. Kawato, S. Kuroda and N. Schweighofer, Curr. Opin. Neurobiol. (2011). Google ScholarR. M. Kelly and P. L. Strick, J. Neurosci. 23, 8432 (2003). Crossref, Medline, ISI, Google ScholarZ. M. Khaliq and I. M. Raman, J. Neurosci. 26, 1935 (2006), DOI: 10.1523/JNEUROSCI.4664-05.2006. Crossref, Medline, ISI, Google ScholarS. Khosrovaniet al., Proc. Natl. Acad. Sci. USA 104, 15911 (2007), DOI: 10.1073/pnas.0702727104. Crossref, Medline, ISI, Google ScholarW. M. Kistler and C. I. De Zeeuw, Cerebellum 2, 44 (2003), DOI: 10.1080/14734220309426. Crossref, Medline, ISI, Google ScholarM. C. Le Guen and C. I. De Zeeuw, Funct. Neurol. 25, 141 (2010). Medline, ISI, Google ScholarA. M. Libsteret al., Funct. Neurol. 129 (2010). Medline, ISI, Google ScholarI. Llanoet al., J. Physiol. 434, 183 (1991). Crossref, Medline, ISI, Google ScholarR. Llinas and M. Muhlethaler, J. Physiol. 404, 241 (1988). Crossref, Medline, ISI, Google ScholarR. Llinas and M. Sugimori, J. Physiol. 305, 171 (1980). Crossref, Medline, ISI, Google ScholarR. Llinas and M. Sugimori, J. Physiol. 305, 197 (1980). Crossref, Medline, ISI, Google ScholarR. R. Llinas, Science 242, 1654 (1988), DOI: 10.1126/science.3059497. Crossref, Medline, ISI, Google ScholarR. R. Llinas, J. Physiol. (2011). Google ScholarY. Loewensteinet al., Nat. Neurosci. 8, 202 (2005), DOI: 10.1038/nn1393. Crossref, Medline, ISI, Google ScholarH. Lu, M. J. Hartmann and J. M. Bower, J. Neurophysiol. 94, 1849 (2005), DOI: 10.1152/jn.01275.2004. Crossref, Medline, ISI, Google ScholarR. Maex and E. De Schutter, J. Neurophysiol. 80, 2521 (1998). Crossref, Medline, ISI, Google ScholarP. Mann-Metzer and Y. Yarom, Prog. Brain. Res. 124, 115 (2000). Crossref, Medline, ISI, Google ScholarJ. Mapelli and E. D'Angelo, J. Neurosci. 27, 1285 (2007), DOI: 10.1523/JNEUROSCI.4873-06.2007. Crossref, Medline, ISI, Google ScholarJ. Mapelli, D. Gandolfi and E. D'Angelo, J. Neurophysiol. 103, 250 (2010), DOI: 10.1152/jn.00642.2009. Crossref, Medline, ISI, Google ScholarJ. Mapelli, D. Gandolfi and E. D'Angelo, Front Cell Neurosci. 4, 14 (2010). Medline, ISI, Google ScholarD. Marr, J. Physiol. 202, 437 (1969). Crossref, Medline, ISI, Google ScholarS. P. Marshall and E. J. Lang, J. Neurosci. 11356 (2004), DOI: 10.1523/JNEUROSCI.3907-04.2004. Medline, ISI, Google ScholarA. Mathyet al., Neuron 62, 388 (2009), DOI: 10.1016/j.neuron.2009.03.023. Crossref, Medline, ISI, Google Scholar P. Mazzarello , Golgi, a Biography of the Founder of Modern Neuroscience ( Oxford University Press , New York , 2010 ) . Google ScholarJ. F. Medina and M. D. Mauk, Nat. Neurosci. 3, 1205 (2000), DOI: 10.1038/81486. Crossref, Medline, ISI, Google ScholarS. J. Mitchell and R. A. Silver, Neuron 38, 433 (2003), DOI: 10.1016/S0896-6273(03)00200-9. Crossref, Medline, ISI, Google ScholarW. Mittmann and M. Hausser, J. Neurosci. 27, 5559 (2007), DOI: 10.1523/JNEUROSCI.5117-06.2007. Crossref, Medline, ISI, Google ScholarW. Mittmann, U. Koch and M. Hausser, J. Physiol. 563, 369 (2005), DOI: 10.1113/jphysiol.2004.075028. Crossref, Medline, ISI, Google ScholarP. Monsivaiset al., J. Neurosci. 25, 464 (2005), DOI: 10.1523/JNEUROSCI.3871-04.2005. Crossref, Medline, ISI, Google ScholarR. A. Muller, E. Courchesne and G. Allen, Science 282, 879 (1998). Crossref, Medline, ISI, Google ScholarT. Nieuset al., J. Neurophysiol. 95, 686 (2006), DOI: 10.1152/jn.00696.2005. Crossref, Medline, ISI, Google ScholarH. Noda and D. A. Suzuki, J. Physiol. 294, 317 (1979). Crossref, Medline, ISI, Google ScholarH. Noda and D. A. Suzuki, J. Physiol. 294, 335 (1979). Crossref, Medline, ISI, Google ScholarH. Noda and D. A. Suzuki, J. Physiol. 294, 349 (1979). Crossref, Medline, ISI, Google Scholar S. L. Palay and V. Chan-Palay , Cerebellar cortex: Cytology and organization ( Springer-Verlag , New York , 1974 ) . Crossref, Google ScholarL. M. Palmeret al., J. Physiol. 588, 1709 (2010), DOI: 10.1113/jphysiol.2010.188300. Crossref, Medline, ISI, Google ScholarJ. P. Pellerin and Y. Lamarre, J. Neurophysiol. 78, 3502 (1997). Crossref, Medline, ISI, Google ScholarA. Pellionisz and R. Llinas, Neuroscience 7, 2949 (1982). Crossref, Medline, ISI, Google ScholarE. Phokaet al., PLoS. Comput. Biol. 6, e1000768 (2010), DOI: 10.1371/journal.pcbi.1000768. Crossref, Medline, ISI, Google ScholarA. Pijperset al., J. Neurosci. 26, 12067 (2006), DOI: 10.1523/JNEUROSCI.2905-06.2006. Crossref, Medline, ISI, Google Scholar P. S. Churchland , The Mind-Brain Continuum , eds. R. Llinas and P. S. Churchland ( MIT Press , Cambridge MA , 1998 ) . Google ScholarI. M. Raman and B. P. Bean, J. Neurosci. 17, 4517 (1997). Crossref, Medline, ISI, Google ScholarN. Ramnani, Nat. Rev. Neurosci. 7, 511 (2006), DOI: 10.1038/nrn1953. Crossref, Medline, ISI, Google ScholarE. A. Rancz and M. Hausser, Proc. Natl. Acad. Sci. USA 107, 22284 (2010), DOI: 10.1073/pnas.1008605107. Crossref, Medline, ISI, Google ScholarE. A. Ranczet al., Nature 450, 1245 (2007), DOI: 10.1038/nature05995. Crossref, Medline, ISI, Google ScholarJ. L. Raymond, S. G. Lisberger and M. D. Mauk, Science 272, 1126 (1996), DOI: 10.1126/science.272.5265.1126. Crossref, Medline, ISI, Google ScholarL. Rinaldo and C. Hansel, Funct. Neurol. 25, 135 (2010). Medline, ISI, Google ScholarL. Roggeriet al., J. Neurosci. 28, 6354 (2008), DOI: 10.1523/JNEUROSCI.5709-07.2008. Crossref, Medline, ISI, Google ScholarD. Rokni, R. Llinas and Y. Yarom, Front. Syst. Neurosci. 1, 1 (2007), DOI: 10.3389/neuro.06.001.2007. Medline, Google ScholarD. Rokni, R. Llinas and Y. Yarom, Front. Neurosci. 2, 192 (2008), DOI: 10.3389/neuro.01.036.2008. Crossref, Medline, ISI, Google ScholarD. Rokniet al., Front Cell Neurosci. 3, 12 (2009), DOI: 10.3389/neuro.03.012.2009. Medline, Google ScholarH. Roset al., J. Neurosci. 29, 10309 (2009), DOI: 10.1523/JNEUROSCI.2327-09.2009. Crossref, Medline, ISI, Google ScholarS. Ruedigeret al., Nature 473, 514 (2011), DOI: 10.1038/nature09946. Crossref, Medline, ISI, Google Scholar R. Llinas and P. S. Churchland , The Mind-Brain Continuum , eds. R. Llinas and P. S. Churchland ( MIT Press , Cambridge MA , 1998 ) . Google ScholarB. Sacchetti, B. Scelfo and P. Strata, Neuroscience 162, 756 (2009), DOI: 10.1016/j.neuroscience.2009.01.064. Crossref, Medline, ISI, Google ScholarF. Santamaria, P. G. Tripp and J. M. Bower, J. Neurophysiol. 97, 248 (2007), DOI: 10.1152/jn.01098.2005. Crossref, Medline, ISI, Google ScholarJ. D. Schmahmann and D. N. Pandya, Cortex 44, 1037 (2008). Crossref, Medline, ISI, Google ScholarC. Schneider, D. Zytnicki and C. Capaday, Neurosci. Lett. Ireland 183 (2001), DOI: 10.1016/S0304-3940(01)02105-X. Google ScholarA. Schnitzleret al., Mov. Disord. 24, 1629 (2009), DOI: 10.1002/mds.22633. Crossref, Medline, ISI, Google ScholarA. Schnitzler, L. Timmermann and J. Gross, J. Physiol. Paris 99, 3 (2006). Crossref, Medline, ISI, Google ScholarM. Schonewilleet al., Neuron 70, 43 (2011), DOI: 10.1016/j.neuron.2011.02.044. Crossref, Medline, ISI, Google ScholarM. Schonewilleet al., Nat. Neurosci. 9, 459 (2006), DOI: 10.1038/nn0406-459. Crossref, Medline, ISI, Google ScholarN. Schweighofer, M. A. Arbib and M. Kawato, Eur. J. Neurosci. 10, 86 (1998), DOI: 10.1046/j.1460-9568.1998.00006.x. Crossref, Medline, ISI, Google ScholarN. Schweighofer, K. Doya and F. Lay, Neuroscience 103, 35 (2001), DOI: 10.1016/S0306-4522(00)00548-0. Crossref, Medline, ISI, Google ScholarN. Schweighofer and G. Ferriol, Proc. Natl. Acad. Sci. USA. 97, 10661 (2000), DOI: 10.1073/pnas.97.19.10661. Crossref, Medline, ISI, Google ScholarN. Schweighoferet al., Eur. J. Neurosci. 10, 95 (1998), DOI: 10.1046/j.1460-9568.1998.00007.x. Crossref, Medline, ISI, Google ScholarG. M. Shambes, J. M. Gibson and W. Welker, Brain. Behav. Evol. 15, 94 (1978), DOI: 10.1159/000123774. Crossref, Medline, ISI, Google ScholarC. Shumway, J. Morissette and J. M. Bower, J. Neurophysiol. 2630 (2005), DOI: 10.1152/jn.00161.2005. Medline, ISI, Google ScholarR. E. Sims and N. A. Hartell, J. Neurosci. 25, 3246 (2005), DOI: 10.1523/JNEUROSCI.0073-05.2005. Crossref, Medline, ISI, Google ScholarR. E. Sims and N. A. Hartell, J. Neurosci. 26, 5153 (2006), DOI: 10.1523/JNEUROSCI.4121-05.2006. Crossref, Medline, ISI, Google ScholarG. J. Soler-Llavina and B. L. Sabatini, Nat. Neurosci. 9, 798 (2006), DOI: 10.1038/nn1698. Crossref, Medline, ISI, Google ScholarS. Solinaset al., Front Cell Neurosci. 1, 2 (2007), DOI: 10.3389/neuro.03.004.2007. Medline, ISI, Google ScholarS. Solinaset al., Front Cell Neurosci. 1, 4 (2007), DOI: 10.3389/neuro.03.004.2007. Medline, ISI, Google ScholarS. Solinas, T. Nieus and E. D'Angelo, Front Cell Neurosci. 4, 12 (2010). Medline, ISI, Google ScholarS. M. Solinas, R. Maex and E. De Schutter, Eur. J. Neurosci. 23, 1207 (2006), DOI: 10.1111/j.1460-9568.2005.04564.x. Crossref, Medline, ISI, Google ScholarC. Sotelo and R. Llinas, J. Cell. Biol. 53, 271 (1972), DOI: 10.1083/jcb.53.2.271. Crossref, Medline, ISI, Google ScholarV. Steuberet al., Neuron 54, 121 (2007), DOI: 10.1016/j.neuron.2007.03.015. Crossref, Medline, ISI, Google ScholarV. Steuberet al., J. Comput. Neurosci. 30, 633 (2011), DOI: 10.1007/s10827-010-0282-z. Crossref, Medline, ISI, Google ScholarK. Tahonet al., J. Neurophysiol. (2011). Medline, ISI, Google ScholarD. Timmann, S. Watts and J. Hore, J. Neurophysiol. 82, 103 (1999). Crossref, Medline, ISI, Google ScholarG. Tononi and G. M. Edelman, Science 282, 1846 (1998), DOI: 10.1126/science.282.5395.1846. Crossref, Medline, ISI, Google ScholarM. M. Usowiczet al., Neuron 9, 1185 (1992), DOI: 10.1016/0896-6273(92)90076-P. Crossref, Medline, ISI, Google ScholarM. Uusisaari and E. De Schutter, J. Physiol. (2011). Medline, ISI, Google ScholarM. Uusisaari, K. Obata and T. Knopfel, J. Neurophysiol. 97, 901 (2007), DOI: 10.1152/jn.00974.2006. Crossref, Medline, ISI, Google ScholarR. S. Van Der Giessenet al., Neuron 58, 599 (2008), DOI: 10.1016/j.neuron.2008.03.016. Crossref, Medline, ISI, Google ScholarK. Vervaekeet al., Neuron 67, 435 (2010), DOI: 10.1016/j.neuron.2010.06.028. Crossref, Medline, ISI, Google ScholarJ. Voogd, Cerebellum 10, 334 (2010), DOI: 10.1007/s12311-010-0221-6. Crossref, Medline, ISI, Google ScholarI. Vranesicet al., Proc. Natl. Acad. Sci. USA 91, 13014 (1994), DOI: 10.1073/pnas.91.26.13014. Crossref, Medline, ISI, Google ScholarJ. T. Walter, M. J. Dizon and K. Khodakhah, J. Neurosci. 29, 8462 (2009), DOI: 10.1523/JNEUROSCI.5718-08.2009. Crossref, Medline, ISI, Google ScholarJ. P. Welshet al., Nature 374, 453 (1995), DOI: 10.1038/374453a0. Crossref, Medline, ISI, Google ScholarS. R. Williamset al., J. Physiol. 539, 469 (2002), DOI: 10.1113/jphysiol.2001.013136. Crossref, Medline, ISI, Google Scholar Witter L, De Zeeuw CI, Ruigrok TJ, Hoebeek FE, The Cerebellar Nuclei Take Center Stage, Cerebellum, 2011 . Google ScholarD. M. Wolpert, R. C. Miall and M. Kawato, Trends. Cogn. Sci. 2, 338 (1998), DOI: 10.1016/S1364-6613(98)01221-2. Crossref, Medline, ISI, Google ScholarY. Yarom and D. Cohen, Ann. N Y Acad. Sci. 978, 122 (2002). Crossref, Medline, ISI, Google ScholarM. M. Yartsevet al., Front. Syst. Neurosci. 3, 2 (2009), DOI: 10.3389/neuro.06.002.2009. Medline, ISI, Google ScholarN. Zheng and I. M. Raman, J. Neurosci. 29, 9826 (2009), DOI: 10.1523/JNEUROSCI.2069-09.2009. Crossref, Medline, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 34Cerebellar transcranial current stimulation – An intraindividual comparison of different techniquesRebecca Herzog, Till M. Berger, Martje G. Pauly, Honghu Xue and Elmar Rueckert et al.15 September 2022 | Frontiers in Neuroscience, Vol. 16Discovering Microcircuit Secrets With Multi-Spot Imaging and Electrophysiological Recordings: The Example of Cerebellar Network DynamicsMarialuisa Tognolina, Anita Monteverdi and Egidio D'Angelo18 March 2022 | Frontiers in Cellular Neuroscience, Vol. 16Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning MethodZhanDong Li, Deling Wang, HuiPing Liao, ShiQi Zhang and Wei Guo et al.4 March 2022 | Frontiers in Genetics, Vol. 13Computational Structure of the Cerebellar Molecular LayerJames M. Bower5 December 2021Cerebellar DysfunctionAbraham M. Joshua, Karishma H. S. Keswani and Rohit Pai21 June 2022Evaluating the efficacy of hearing aids for tinnitus therapy – A Positron emission tomography studyPatricia Simonetti, Carla Rachel Ono, Camila de Godoi Carneiro, Rafay Ali Khan and Somayeh Shahsavarani et al.1 Jan 2022 | Brain Research, Vol. 1775Deficiency of TRIM32 Impairs Motor Function and Purkinje Cells in Mid-Aged MiceJian-Wei Zhu, Wei-Qiang Jia, Hui Zhou, Yi-Fei Li and Ming-Ming Zou et al.6 August 2021 | Frontiers in Aging Neuroscience, Vol. 13Distribution of CGRP and CGRP receptor components in the rat brainKarin Warfvinge and Lars Edvinsson31 August 2017 | Cephalalgia, Vol. 39, No. 3Increased Resting-State Cerebellar-Cerebral Functional Connectivity Underlying Chronic TinnitusYuan Feng, Yu-Chen Chen, Han Lv, Wenqing Xia and Cun-Nan Mao et al.5 March 2018 | Frontiers in Aging Neuroscience, Vol. 10Physiology of the cerebellumEgidio D'Angelo1 Jan 2018Temporal constrained objects for modelling neuronal dynamicsManjusha Nair, Jinesh Manchan Kannimoola, Bharat Jayaraman, Bipin Nair and Shyam Diwakar23 July 2018 | PeerJ Computer Science, Vol. 4The effect of L-dopa in Parkinson's disease as revealed by neurophysiological studies of motor and sensory functionsAntonio Suppa, Matteo Bologna, Antonella Conte, Alfredo Berardelli and Giovanni Fabbrini12 August 2016 | Expert Review of Neurotherapeutics, Vol. 17, No. 2Computational Neuroscience of Timing, Plasticity and Function in Cerebellum MicrocircuitsShyam Diwakar, Chaitanya Medini, Manjusha Nair, Harilal Parasuram and Asha Vijayan et al.2 February 2017Repetitive TMS on Left Cerebellum Affects Impulsivity in Borderline Personality Disorder: A Pilot StudyGiulia Zelda De Vidovich, Riccardo Muffatti, Jessica Monaco, Nicoletta Caramia and Davide Broglia et al.5 December 2016 | Frontiers in Human Neuroscience, Vol. 10Rehabilitation of ataxic gait following cerebellar lesions: Applying theory to practiceGemma Kelly and Jackie Shanley26 July 2016 | Physiotherapy Theory and Practice, Vol. 32, No. 6Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing IssueEgidio D'Angelo, Alberto Antonietti, Stefano Casali, Claudia Casellato and Jesus A. Garrido et al.8 July 2016 | Frontiers in Cellular Neuroscience, Vol. 10Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of LearningEgidio D'Angelo, Lisa Mapelli, Claudia Casellato, Jesus A. Garrido and Niceto Luque et al.26 August 2015 | The Cerebellum, Vol. 15, No. 2Toll-Like Receptor 4 Deficiency Impairs Motor CoordinationJian-Wei Zhu, Yi-Fei Li, Zhao-Tao Wang, Wei-Qiang Jia and Ru-Xiang Xu16 February 2016 | Frontiers in Neuroscience, Vol. 10Neural correlates underlying micrographia in Parkinson's diseaseTao Wu, Jiarong Zhang, Mark Hallett, Tao Feng and Yanan Hou et al.2 November 2015 | Brain, Vol. 139, No. 1GPGPU implementation of information theoretic algorithms for the analysis of granular layer neuronsManjusha Nair, Prasanth Madhu, Vyshnav Mohan, Arathi G Rajendran and Bipin Nair et al.1 Dec 2015Efficient simulations of spiking neurons on parallel and distributed platforms: Towards large-scale modeling in computational neuroscienceManjusha Nair, Shan Surya, Revathy S Kumar, Bipin Nair and Shyam Diwakar1 Dec 2015GPGPU Implementation of a Spiking Neuronal Circuit Performing Sparse RecodingManjusha Nair, Bipin Nair and Shyam Diwakar18 November 2015Computational Modeling of Neuronal Dysfunction at Molecular Level Validates the Role of Single Neurons in Circuit Functions in Cerebellum Granular LayerShyam Diwakar31 October 2015Cerebellar abnormalities in Huntington's disease: A role in motor and psychiatric impairment?Elin M. Rees, Ruth Farmer, James H. Cole, Salman Haider and Alexandra Durr et al.13 August 2014 | Movement Disorders, Vol. 29, No. 13Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulationNiceto R. Luque, Jesús A. Garrido, Richard R. Carrillo, Egidio D'Angelo and Eduardo Ros15 August 2014 | Frontiers in Computational Neuroscience, Vol. 8The cerebellum for jocks and nerds alikeLaurentiu S. Popa, Angela L. Hewitt and Timothy J. Ebner17 June 2014 | Frontiers in Systems Neuroscience, Vol. 8Sperm Whales and Killer Whales with the Largest Brains of All Toothed Whales Show Extreme Differences in CerebellumSam H. Ridgway and Alicia C. Hanson21 May 2014 | Brain, Behavior and Evolution, Vol. 83, No. 4An adaptive filter model of cerebellar zone C3 as a basis for safe limb control?Paul Dean, Sean Anderson, John Porrill and Henrik Jörntell2 September 2013 | The Journal of Physiology, Vol. 591, No. 22Connection control implications in a distributed plasticity cerebellar modelNiceto R Luque, Jesús A Garrido, Richard R Carrillo and Eduardo Ros8 July 2013 | BMC Neuroscience, Vol. 14, No. S1Plasticity in the Cerebellum and Primary Somatosensory Cortex Relating to Habitual and Continuous Slender Branch Climbing in Laboratory Mice ( Mus musculus )Craig D. Byron, Daniel Vanvalkinburgh, Katharine Northcutt and Virginia Young12 March 2013 | The Anatomical Record, Vol. 296, No. 5Computational Structure of the Cerebellar Molecular LayerJames M. Bower1 Jan 2013Distributed synergistic plasticity and cerebellar learningZhenyu Gao, Boeke J. van Beugen and Chris I. De Zeeuw16 August 2012 | Nature Reviews Neuroscience, Vol. 13, No. 9An integrated motor control loop of a human-like robotic arm: Feedforward, feedback and cerebellum-based learningC. Casellato, A. Pedrocchi, J. A. Garrido, N. R. Luque and G. Ferrigno et al.1 Jun 2012Associable representations as field of influence for dynamic cognitive processesL. A. Cacha and R. R. Poznanski30 April 2012 | Journal of Integrative Neuroscience, Vol. 10, No. 04 Recommended Vol. 10, No. 03 Metrics History Received 19 June 2011 Accepted 28 June 2011 KeywordsCerebellummotor controlataxiatimingLTPLTDPDF download

Referência(s)