Artigo Acesso aberto Revisado por pares

Designing sampling schemes for effect monitoring of nutrient leaching from agricultural soils

2008; Wiley; Volume: 59; Issue: 2 Linguagem: Inglês

10.1111/j.1365-2389.2007.00996.x

ISSN

1365-2389

Autores

D.J. Brus, I.G.A.M. Noij,

Tópico(s)

Statistical Methods and Bayesian Inference

Resumo

Summary A general methodology for designing sampling schemes for monitoring is illustrated with a case study aimed at estimating the temporal change of the spatial mean P concentration in the topsoil of an agricultural field after implementation of the remediation measure. A before‐after control‐impact (BACI) sample‐pattern is proposed, with stratified random sampling as a spatial sampling design. The strata are formed as compact blocks of equal area, so that the sample locations cover the field very well. Composite sampling, where the aliquots of a composite come from different strata, is proposed in order to save laboratory costs. The numbers of composites and aliquots per composite are optimized for testing the hypothesis that the mean P concentration didn’t change or has increased. Initially, this is done for a known variogram, temporal correlation, variance of laboratory measurement error, initial mean P concentration, and time needed for fieldwork. The optimal sample size to achieve a power of 0.90 at a 10% decrease of the mean P concentration is six composites of six aliquots each. Next, the effect of uncertainty about these model parameters on the optimal sample size and on the power of the test for a fixed sample size is analyzed. This analysis showed that, to obtain a probability of 95% that the power ≥ 0.90, the sample size must be increased to 7 composites of 10 aliquots each.

Referência(s)
Altmetric
PlumX