Artigo Acesso aberto

Karyotype and Gene Order Evolution from Reconstructed Extinct Ancestors Highlight Contrasts in Genome Plasticity of Modern Rosid Crops

2015; Oxford University Press; Volume: 7; Issue: 3 Linguagem: Inglês

10.1093/gbe/evv014

ISSN

1759-6653

Autores

Florent Murat, Rongzhi Zhang, Sébastien Guizard, Haris Gavranović, Raphaël Flores, Delphine Steinbach, Hadi Quesneville, Éric Tannier, Jérôme Salse,

Tópico(s)

Plant Virus Research Studies

Resumo

We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, "DicotSyntenyViewer" (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids.

Referência(s)